Continuous monitoring, continuous auditing and continuous assurance are three methods that utilize a high degree of business intelligence and analytics. The increased interest in the three methods has led to multiple studies that analyze each method or a combination of methods from a micro-level. However, limited studies have focused on the perceived usage scenarios of the three methods from a macro level through the eyes of the end-user. In this study, we bridge the gap by identifying the different usage scenarios for each of the methods according to the end-users, the accountants. Data has been collected through a survey, which is analyzed by applying a nominal analysis and a process mining algorithm. Results show that respondents indicated 13 unique usage scenarios, while not one of the three methods is included in all of the 13 scenarios, which illustrates the diversity of opinions in accountancy practice in the Netherlands.
Objective: To evaluate the preliminary effectiveness of a goal-directed movement intervention using a movement sensor on physical activity of hospitalized patients. Design: Prospective, pre-post study. Setting: A university medical center. Participants: Patients admitted to the pulmonology and nephrology/gastro-enterology wards. Intervention: The movement intervention consisted of (1) self-monitoring of patients' physical activity, (2) setting daily movement goals and (3) posters with exercises and walking routes. Physical activity was measured with a movement sensor (PAM AM400) which measures active minutes per day. Main measures: Primary outcome was the mean difference in active minutes per day pre- and post-implementation. Secondary outcomes were length of stay, discharge destination, immobility-related complications, physical functioning, perceived difficulty to move, 30-day readmission, 30-day mortality and the adoption of the intervention. Results: A total of 61 patients was included pre-implementation, and a total of 56 patients was included post-implementation. Pre-implementation, patients were active 38 ± 21 minutes (mean ± SD) per day, and post-implementation 50 ± 31 minutes per day (Δ12, P = 0.031). Perceived difficulty to move decreased from 3.4 to 1.7 (0-10) (Δ1.7, P = 0.008). No significant differences were found in other secondary outcomes. Conclusions: The goal-directed movement intervention seems to increase physical activity levels during hospitalization. Therefore, this intervention might be useful for other hospitals to stimulate inpatient physical activity.
This paper describes the approach used to identify elderly people’s needs and attitudes towards applying ambient sensor systems for monitoring daily activities in the home. As elderly are typically unfamiliar with such ambient technology, interactive tools for explicating sensor monitoring –an interactive dollhouse and iPad applications for displaying live monitored sensor activity data– were developed and used for this study. Furthermore, four studies conducted by occupational therapists with more than 60 elderly participants –including questionnaires (n=41), interviews (n=6), user sessions (n=14) and field studies (n=2)– were conducted. The experiences from these studies suggest that this approach helped to democratically engage the elderly as end-user and identify acceptance issues.
Tot op heden is er weinig tot geen inzicht in de beweegredenen achter routekeuzes. Deze informatie is van belang om fietsgedrag te kunnen beïnvloeden en stimuleren. Ter verbetering van de bikeability zijn in Groningen de Slimme Routes bedacht, waarbij fietsers om drukke plekken heen worden geleid. Hiermee moeten drukke en onveilige situaties tussen weggebruikers voorkomen worden. Met behulp van objectieve monitoring is getracht zowel kwantitatieve als kwalitatieve data te verzamelen over het fietsgedrag richting het Zernikecomplex met als dit gedrag te kunnen beïnvloeden.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations
In societies where physical activity levels are declining, stimulating sports participation in youth is vital. While sports offer numerous benefits, injuries in youth are at an all-time high with potential long-term consequences. Particularly, women football's popularity surge has led to a rise in knee injuries, notably anterior cruciate ligament (ACL) injuries, with severe long-term effects. Urgent societal attention is warranted, supported by media coverage and calls for action by professional players. This project aims to evaluate the potential of novel artificial intelligence-based technology to enhance player monitoring for injury risk, and to integrate these monitoring pathways into regular training practice. Its success may pave the way for broader applications across different sports and injuries. Implementation of results from lab-based research into practice is hindered by the lack of skills and technology needed to perform the required measurements. There is a critical need for non-invasive systems used during regular training practice and allowing longitudinal monitoring. Markerless motion capture technology has recently been developed and has created new potential for field-based data collection in sport settings. This technology eliminates the need for marker/sensor placement on the participant and can be employed on-site, capturing movement patterns during training. Since a common AI algorithm for data processing is used, minimal technical knowledge by the operator is required. The experienced PLAYSAFE consortium will exploit this technology to monitor 300 young female football players over the course of 1 season. The successful implementation of non-invasive monitoring of football players’ movement patterns during regular practice is the primary objective of this project. In addition, the study will generate key insights into risk factors associated with ACL injury. Through this approach, PLAYSAFE aims to reduce the burden of ACL injuries in female football players.