We demonstrate a method that allows two users to communicate remotely using their sense of touch by dynamically applying vibrotactile feedback to one user's forearm using two different input methods. User input on a standard mobile touch-screen device or a purpose-built touch-sensitive wearable is analyzed in real time, and used to control intensity, location, and motion parameters of the vibrotactile output to synthesize the stroke on a second users arm. Our method demonstrates that different input methods can be used for generating similar vibrotactile sensations.
DOCUMENT
Gentle stroking touches are rated most pleasant when applied at a velocity of between 1–10 cm/s. Such touches are considered highly relevant in social interactions. Here, we investigate whether stroking sensations generated by a vibrotactile array can produce similar pleasantness responses, with the ultimate goal of using this type of haptic display in technology mediated social touch. A study was conducted in which participants received vibrotactile stroking stimuli of different velocities and intensities, applied to their lower arm. Results showed that the stimuli were perceived as continuous stroking sensations in a straight line. Furthermore, pleasantness ratings for low intensity vibrotactile stroking followed an inverted U-curve, similar to that found in research into actual stroking touches. The implications of these findings are discussed.
DOCUMENT
Deictic gestures are gestures we make during communication to point at objects or persons. Indicative acts of directing-to guide the addressee to an object, while placing-for acts place an object for the addressee’s attention. Commonly used presentation software tools, such as PowerPoint and Keynote, offer ample support for placing-for gestures, e.g. slide transitions, progressive disclosure of list items and animations. Such presentation tools, however, do not generally offer adequate support for the directing-to indicative act (i.e. pointing gestures). In this paper we argue the value of presenting deictic gestures to a remote audience. Our research approach is threefold: identify indicative acts that are naturally produced by presenters; design tangible gestures for multi-touch surfaces that replicate the intent of those indicative acts; and design a set of graphical effects for remote viewing that best represent these indicative acts for the audience. Clinton Jorge1, Jos P. van Leeuwen2, Dennis Dams3, Jan Bouwen4 1 University of Madeira, Madeira-ITI, Funchal, Portugal; 2 The Hague University of Applied Sciences, The Hague, Netherlands; 3,4 Bell Labs, Alcatel-Lucent, Antwerp, Belgium Copyright shared between: University of Madeira, Madeira-ITI, Funchal, Portugal; The Hague University of Applied Sciences, The Hague, Netherlands; Bell Labs, Alcatel-Lucent, Antwerp, Belgium
DOCUMENT