Young widowhood, conceptualized as the loss of one’s spouse before the age of 50, is a profoundly painful and distressing loss (Den Elzen, 2017, 2018). The literature on young widowhood shows the death of a partner generally causes a fragmentation of the self, as it violates expectations of the normal life cycle, namely growing old together (Haase and Johnston, 2012; Levinson, 1997). Premature loss of one’s spouse tends to be experienced by the surviving partner as distressing or traumatizing, such as having witnessed their suffering in illness or through accident (Den Elzen, 2018) or in struggling with unfinished business (Holland et al, 2020). Whilst post-traumatic stress is well-known and has been widely researched across various disciplines, the concept of post-traumatic growth is much newer and by contrast has received less attention. PTG was introduced as a scholarly concept by Tedeschi and Calhoun in the mid-1990s and is defined as a positive psychological change as a result of the struggle with highly challenging life events (2004). Calhoun and Tedeschi’s notion of PTG has been backed by a recent systematic review. In the first meta-analysis of moderate-to-high PTG, Wu et al. found that of the 10,181 subjects, about 50% experienced PTG (2019). They also reported that women, young people and victims of trauma experienced higher levels of PTG than men, the elderly and those who experienced indirect trauma. PTG has attracted some controversy, with some researchers questioning its scientific validity (Jayawickreme and Blackie, 2014). Others caution against the minimization of people’s suffering. Hayward is a trauma counsellor who advises approaching PTG carefully, highlighting that if it is introduced with clients too early it can "often be construed as minimizing someone's pain and suffering and minimizing the impact of the loss" (cited in Collier, 2016, n.p.). In addressing the critique of PTG, Calhoun and Tedeschi (2006) emphasize that the focus on investigating positive psychological change following trauma does not deny the common and well-documented negative psychological responses and distress following severe life stresses: “Negative events tend to produce, for most persons, consequences that are negative” (p.4). They argue however, and their research supports this finding, that for many people distressful events can foster positive psychological changes. We view PTG as a possibility following (profound) loss, and emphasize that PTG may continue to co-exist with painful and/or unresolved emotions regarding the loss itself. We conceptualize PTG as a continuum and not as an either/or binary with grief. Further, we wish to highlight that PTG is a highly individual process that depends on many factors, and we are not suggesting that the absence of PTG is to be seen as a failure. This chapter intends to contribute to the study of PTG through a person-centered approach. The most used method to assess PTG is the 21-item posttraumatic growth inventory developed by Calhoun and Tedeschi in 1996 (Jayawickreme & Blackie, 2014). Self-reported posttraumatic growth has been the foundation of PTG research, which has aimed to identify to what extent PTG evokes improved psychological and physical health. In discussing our own creative narrative processes of PTG, our practice-led-research lens aims to contribute to research on how PTG might be fostered. We propose a Writing-for-wellbeing approach in this context and explore what it offered us both as writers and widows and what it might offer the field of Writing-for-wellbeing and by extension clinical and scholarly practice.
The concept of biodiversity, which usually serves as a shorthand to refer to the diversity of life on Earth at different levels (ecosystems, species, genes), was coined in the 1980s by conservation biologists worried over the degradation of ecosystems and the loss of species, and willing to make a case for the protection of nature – while avoiding this “politically loaded” term (Takacs, 1996). Since then, the concept has been embedded in the work of the Convention on Biological Diversity (CBD, established in 1992) and of the Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services (IPBES, aka ‘the IPCC for biodiversity’, established in 2012). While the concept has gained policy traction, it is still unclear to which extent it has captured the public imagination. Biodiversity loss has not triggered the same amount of attention or controversy as climate change globally (with some exceptions). This project, titled Prompting for biodiversity, investigates how this issue is mediated by generative visual AI, directing attention to both how ‘biodiversity’ is known and imagined by AI and to how this may shape public ideas around biodiversity loss and living with other species.
LINK
tract Micro wind turbines can be structurally integrated on top of the solid base of noise barriers near highways. A number of performance factors were assessed with holistic experiments in wind tunnel and in the field. The wind turbines underperformed when exposed in yawed flow conditions. The theoretical cosθ theories for yaw misalignment did not always predict power correctly. Inverter losses turned out to be crucial especially in standby mode. Combination of standby losses with yawed flow losses and low wind speed regime may even result in a net power consuming turbine. The micro wind turbine control system for maintaining optimal power production underperformed in the field when comparing tip speed ratios and performance coefficients with the values recorded in the wind tunnel. The turbine was idling between 20%–30% of time as it was assessed for sites with annual average wind speeds of three to five meters per second without any power production. Finally, the field test analysis showed that inadequate yaw response could potentially lead to 18% of the losses, the inverter related losses to 8%, and control related losses to 33%. The totalized loss led to a 48% efficiency drop when compared with the ideal power production measured before the inverter. Micro wind turbine’s performance has room for optimization for application in turbulent wind conditions on top of noise barriers. https://doi.org/10.3390/en14051288
De glastuinbouw in Nederland is wereldwijd toonaangevend en loopt voorop in automatisering en data-gedreven bedrijfsvoering. Voor de data-gedreven teelt wordt, naast het monitoren van de kas-parameters ook het monitoren van gewasparameters steeds meer gevraagd. De sector is daarbij vooral geïnteresseerd in niet-destructieve, contactloze en persoonsonafhankelijk monitoring van gewassen. Optische sensortechnologie, zoals spectrale afbeeldingstechnologie, kan veel waardevolle informatie opleveren over de staat van een gewas of vrucht, bijvoorbeeld over het suikergehalte, maar ook de aanwezigheid van plantziektes of insecten. Echter is dit vaak een te kostbare oplossing voor zowel de technologiebedrijven die oplossingen leveren als voor de telers zelf. In dit project onderzoeken wij de mogelijkheid om spectrale beeldvorming tegen lagere kosten te realiseren. Het beoogde resultaat is een prototype van een instrument dat tegen lage kosten met spectrale beeldvorming een of meerdere gewaseigenschappen kan kwantificeren. Realisatie van dit prototype heeft een sterke Fotonica-component (expertise Haagse Hogeschool) maakt gebruik van Machine Learning (expertise perClass) en is bedoeld voor toepassing op scout robots in de glastuinbouw (expertise Mythronics). Een betaalbare oplossing betekent in potentie voor de teler een betere controle over kwaliteit van het gewas en automatisering voor detectie van ziekte-uitbraken. Bij een succesvol prototype kan deze innovatie leiden tot betere voedselkwaliteit en minder verspilling in de glastuinbouw.