Efficiency of city logistics activities suffers due to conflicting personal preferences and distributed decision making by multiple city logistics stakeholders. This is exacerbated by interdependency of city logistics activities, decision making with limited information and stakeholders’ preference for personal objectives over system efficiency. Accordingly, the key to understanding the causes of inefficiency in the city logistics domain is understanding the interaction between heterogeneous stakeholders of the system. With the capabilities of representing a system in a natural and flexible way, agent based modelling (ABM) is a promising alternative for the city logistics domain. This research focuses on developing a framework for the successful implementation of the ABM approach for the city logistics domain. The framework includes various elements – a multi-perspective semantic data model (i.e. ontology) and its validation, the development of an agent base model using this ontology, and a validation approach for the agent-based model. Conclusively, the framework shows that a rigorous course can be taken to successfully implement agent based modelling approach for the city logistics domain.
In Eastern Africa, increasing climate variability and changing socioeconomic conditions are exacerbating the frequency and intensity of drought disasters. Droughts pose a severe threat to food security in this region, which is characterized by a large dependency on smallholder rain-fed agriculture and a low level of technological development in the food production systems. Future drought risk will be determined by the adaptation choices made by farmers, yet few drought risk models … incorporate adaptive behavior in the estimation of drought risk. Here, we present an innovative dynamic drought risk adaptation model, ADOPT, to evaluate the factors that influence adaptation decisions and the subsequent adoption of measures, and how this affects drought risk for agricultural production. ADOPT combines socio-hydrological and agent-based modeling approaches by coupling the FAO crop model AquacropOS with a behavioral model capable of simulating different adaptive behavioral theories. In this paper, we compare the protection motivation theory, which describes bounded rationality, with a business-as-usual and an economic rational adaptive behavior. The inclusion of these scenarios serves to evaluate and compare the effect of different assumptions about adaptive behavior on the evolution of drought risk over time. Applied to a semi-arid case in Kenya, ADOPT is parameterized using field data collected from 250 households in the Kitui region and discussions with local decision-makers. The results show that estimations of drought risk and the need for emergency food aid can be improved using an agent-based approach: we show that ignoring individual household characteristics leads to an underestimation of food-aid needs. Moreover, we show that the bounded rational scenario is better able to reflect historic food security, poverty levels, and crop yields. Thus, we demonstrate that the reality of complex human adaptation decisions can best be described assuming bounded rational adaptive behavior; furthermore, an agent-based approach and the choice of adaptation theory matter when quantifying risk and estimating emergency aid needs.
MULTIFILE
On the eve of the large-scale introduction of electric vehicles, policy makers have to decide on how to organise a significant growth in charging infrastructure to meet demand. There is uncertainty about which charging deployment tactic to follow. The main issue is how many of charging stations, of which type, should be installed and where. Early roll-out has been successful in many places, but knowledge on how to plan a large-scale charging network in urban areas is missing. Little is known about return to scale effects, reciprocal effects of charger availability on sales, and the impact of fast charging or more clustered charging hubs on charging preferences of EV owners. This paper explores the effects of various roll-out strategies for charging infrastructure that facilitate the large-scale introduction of EVs, using agent-based simulation. In contrast to previously proposed models, our model is rooted in empirically observed charging patterns from EVs instead of travel patterns of fossil fuelled cars. In addition, the simulation incorporates different user types (inhabitants, visitors, taxis and shared vehicles) to model the diversity of charging behaviours in an urban environment. Different scenarios are explored along the lines of the type of charging infrastructure (level 2, clustered level 2, fast charging) and the intensity of rollout (EV to charging point ratio). The simulation predicts both the success rate of charging attempts and the additional discomfort when searching for a charging station. Results suggest that return to scale and reciprocal effects in charging infrastructure are considerable, resulting in a lower EV to charging station ratio on the longer term.
The Dutch main water systems face pressing environmental, economic and societal challenges due to climatic changes and increased human pressure. There is a growing awareness that nature-based solutions (NBS) provide cost-effective solutions that simultaneously provide environmental, social and economic benefits and help building resilience. In spite of being carefully designed and tested, many projects tend to fail along the way or never get implemented in the first place, wasting resources and undermining trust and confidence of practitioners in NBS. Why do so many projects lose momentum even after a proof of concept is delivered? Usually, failure can be attributed to a combination of eroding political will, societal opposition and economic uncertainties. While ecological and geological processes are often well understood, there is almost no understanding around societal and economic processes related to NBS. Therefore, there is an urgent need to carefully evaluate the societal, economic, and ecological impacts and to identify design principles fostering societal support and economic viability of NBS. We address these critical knowledge gaps in this research proposal, using the largest river restoration project of the Netherlands, the Border Meuse (Grensmaas), as a Living Lab. With a transdisciplinary consortium, stakeholders have a key role a recipient and provider of information, where the broader public is involved through citizen science. Our research is scientifically innovative by using mixed methods, combining novel qualitative methods (e.g. continuous participatory narrative inquiry) and quantitative methods (e.g. economic choice experiments to elicit tradeoffs and risk preferences, agent-based modeling). The ultimate aim is to create an integral learning environment (workbench) as a decision support tool for NBS. The workbench gathers data, prepares and verifies data sets, to help stakeholders (companies, government agencies, NGOs) to quantify impacts and visualize tradeoffs of decisions regarding NBS.
Elektrisch rijden staat aan de vooravond van een schaalsprong. De ambitie van zowel de Nederlandse overheid als internationale overheden is om binnen nu en 12 jaar alleen nog maar elektrische auto’s nieuw op de markt toe te laten. De elektrisch vervoer (EV) keten staat voor de grote uitdaging om deze schaalsprong op tijd met voldoende laadinfrastructuur te faciliteren. Nederlandse ketenpartners willen, net als de afgelopen jaren, koploper blijven op het gebied van EV-laadinfrastructuur en daarom goed voorbereid zijn op deze schaalsprong. De centrale praktijkvraag van de EV-ketenpartners is “Hoe kan de toekomstige laadbehoefte voor elektrische voertuigen in een snel groeiende markt met nieuwe gebruikersgroepen goed worden ingevuld?” Het doel van Future Charging is om bij te dragen aan de doorbraak van elektrisch rijden door kennis over de laadbehoefte van nieuwe gebruikersgroepen te ontwikkelen en toekomstig laadgedrag in een agent-based model te simuleren. Simulaties geven EV-ketenpartners concrete inzichten in effecten van toekomstscenario’s op het gebruik van laadinfrastructuur, de impact op het elektriciteitsnet en openbare ruimte. Deze kennis ondersteunt EV-ketenpartners bij de uitrol van toekomstbestendige laadinfrastructuur. In totaal brengt dit project 17 consortiumpartners bij elkaar waarmee de volledige EV-keten voor laadinfrastructuur vertegenwoordigd is: gemeenten, netbeheerders, laadpaal-exploitanten, energiebedrijven en gebruikers. De partners bieden hiermee een rijke praktijkomgeving waar continu kan worden geleerd over de veranderende laadbehoefte van verschillende gebruikersgroepen en in verschillende ruimtelijke settings: van grootstedelijk tot “laden in de regio”. Sinds 2014 beheert en monitort de Hogeschool van Amsterdam de laaddata voor G4/MRA-E. Meer dan 8,5 miljoen laadsessies zijn opgeslagen in een professioneel datawarehouse en middels beveiligde accounts toegankelijk voor onderzoek. Future Charging slaat de brug tussen theorie over laadbehoefte, laadgedrag en agent-based simuleren en de praktijk van laadinfrastructuur. Het resultaat is een praktisch toepasbaar simulatiemodel waarmee ontwerpstudies en praktijkcases worden doorgerekend.
Due to the exponential growth of ecommerce, the need for automated Inventory management is crucial to have, among others, up-to-date information. There have been recent developments in using drones equipped with RGB cameras for scanning and counting inventories in warehouse. Due to their unlimited reach, agility and speed, drones can speed up the inventory process and keep it actual. To benefit from this drone technology, warehouse owners and inventory service providers are actively exploring ways for maximizing the utilization of this technology through extending its capability in long-term autonomy, collaboration and operation in night and weekends. This feasibility study is aimed at investigating the possibility of developing a robust, reliable and resilient group of aerial robots with long-term autonomy as part of effectively automating warehouse inventory system to have competitive advantage in highly dynamic and competitive market. To that end, the main research question is, “Which technologies need to be further developed to enable collaborative drones with long-term autonomy to conduct warehouse inventory at night and in the weekends?” This research focusses on user requirement analysis, complete system architecting including functional decomposition, concept development, technology selection, proof-of-concept demonstrator development and compiling a follow-up projects.