Abstract: Unlike manufacturing technology for semiconductors and printed circuit boards, the market for traditional micro assembly lacks a clear public roadmap. More agile manufacturing strategies are needed in an environment in which dealing with change becomes a rule instead of an exception. In this paper, an attempt is made to bring production with universal micro assembly cells to the next level. This is realised by placing a larger number of cells, called Equiplets, in a “Grid”. Equiplets are compact and low-cost manufacturing platforms that can be reconfigured to a broad number of applications. Benchmarking Equiplet production has shown reduced time to market and a smooth transition from R&D to Manufacturing. When higher production volumes are needed, more systems can be placed in parallel to meet the manufacturing demand. Costs of product design changes in the later stage of industrialisation have been reduced due to the modular production in grids, which allows the final design freeze to be postponed as late as possible. The need for invested capital is also pushed backwards accordingly. doi 10.1007/978-3-642-11598-1_32
LINK
From the article: The ethics guidelines put forward by the AI High Level Expert Group (AI-HLEG) present a list of seven key requirements that Human-centered, trustworthy AI systems should meet. These guidelines are useful for the evaluation of AI systems, but can be complemented by applied methods and tools for the development of trustworthy AI systems in practice. In this position paper we propose a framework for translating the AI-HLEG ethics guidelines into the specific context within which an AI system operates. This approach aligns well with a set of Agile principles commonly employed in software engineering. http://ceur-ws.org/Vol-2659/
From the article: Agile ways of working have become mainstream, with many organisations practising a form of agile. Agile maturity among those organisations differs. In a research conducted by VersionOne Inc. (2016), 82% of the participating organisations stated to be at or below the level of ‘still maturing’. Existing agile and architecture methods have begun to incorporate some aspects of each other, with agile methods including architecting, such as the Scaled Agile Framework (SAFe), and architecture frameworks such as TOGAF (the Open Group Architecture Framework), adding agile elements (Poort, 2014). This study addresses the question how to shape the architecture function to effectively achieve compliance with architecture regulations, of solutions realised in an agile environment. To answer this question a multiple-case study was done, studying three different organisations. The findings are translated into seven propositions.
MULTIFILE
In greenhouse horticulture harvesting is a major bottleneck. Using robots for automatic reaping can reduce human workload and increase efficiency. Currently, ‘rigid body’ robotic grippers are used for automated reaping of tomatoes, sweet peppers, etc. However, this kind of robotic grasping and manipulation technique cannot be used for harvesting soft fruit and vegetables as it will cause damage to the crop. Thus, a ‘soft gripper’ needs to be developed. Nature is a source of inspiration for temporary adhesion systems, as many species, e.g., frogs and snails, are able to grip a stem or leave, even upside down, with firm adhesion without leaving any damage. Furthermore, larger animals have paws that are made of highly deformable and soft material with adjustable grip size and place holders. Since many animals solved similar problems of adhesion, friction, contact surface and pinch force, we will use biomimetics for the design and realization of the soft gripper. With this interdisciplinary field of research we aim to model and develop functionality by mimicking biological forms and processes and translating them to the synthesis of materials, synthetic systems or machines. Preliminary interviews with tech companies showed that also in other fields such as manufacturing and medical instruments, adjustable soft and smart grippers will be a huge opportunity in automation, allowing the handling of fragile objects.
In dit project wordt gekeken naar de validatie van een procesverbeteringstool.Doel De belastingdienst heeft een tool ontwikkeld met als doel de samenhang tussen Business en IT te verbeteren en een proces van continu verbeteren op te starten. Deze tool wil de belastingdienst objectief te evalueren. Resultaten Dit project leidt tot de volgende resultaten: Een validatierapport Een verbeterplan Een wetenschappelijk artikel Looptijd 01 oktober 2021 - 31 december 2022 Aanpak Binnen dit onderzoek wordt gebruik gemaakt van de volgende onderzoeksmethoden: Focusgroepen Literatuuronderzoek Workshops Meedoen in dit onderzoek? Als je onderzoek wil doen naar tools in het werkveld van Agile werken, Business IT alignement of continu verbeteren, neem dan contact op met Paul Morsch.
The transition to a circular, resource efficient construction sector is crucial to achieve climate neutrality in 2050. Construction stillaccounts for 50% of all extracted materials, is responsible for 3% of EU’s waste and for at least 12% of Green House Gas emissions.However, this transition is lagging, the impact of circular building materials is still limited.To accelerate the positive impact of circulair building materials Circular Trust Building has analyzed partners’ circular initiatives andidentified 4 related critical success factors for circularity, re-use of waste, and lower emissions:1. Level of integration2. Organized trust3. Shared learning4. Common goalsScaling these success factors requires new solutions, skills empowering stakeholders, and joint strategies and action plans. Circular TrustBuilding will do so using the innovative sociotechnical transition theory:1.Back casting: integrating stakeholders on common goals and analyzing together what’s needed, what’s available and who cancontribute what. The result is a joint strategy and xx regional action plans.2.Agile development of missing solutions such a Circular Building Trust Framework, Regional Circular Deals, connecting digitalplatforms matching supply and demand3.Increasing institutional capacity in (de-)construction, renovation, development and regulation: trained professionals move thetransition forward.Circular Trust Building will demonstrate these in xx pilots with local stakeholders. Each pilot will at least realize a 25% reduction of thematerial footprint of construction and renovation