© 2025 SURF
This report describes the results and recommendations for Indian dairy farmers and Dutch and Indian companies, from the RAAK Family Dairy Tech India project. Researchers and students of two Dutch and one Indian University of Applied Sciences, together with ten Dutch companies, Indian companies and eight innovative farmers in Pune district collaborated to develop robust and affordable technologies and knowledge for Indian medium sized dairy farmers, in Pune district, Maharashtra. The report also describes innovations in the farmers’ business models and value chains. Partners: Van Hall Larenstein, Velp, and Saxion University of Applied Sciences Enschede, he Netherlands, Agricultural Development Trust Baramati ISBN 978-90-821195-6-5
MULTIFILE
Presentatie van lector Inga Wolframm bij een lezing tijdens de Nieuwjaarsbijeenkomst 2025 'Paardrijden in de Kempen' i.h.k.v. project 'Biodiverse paardenhouderijen'.
MULTIFILE
Food and the city has never been a more urgent theme than today, and The European Union’s priority to commit to innovation in this field will certainly enhance its economic and external strength and improve its competitive position in the world of food and life sciences. Europea Netherlands held a seminar on this topic in May 2016, during the Dutch EU presidency.To be part of this international endeavour, the Netherlands need to strengthen the digital market, support innovation in the internal market, boost domestic policy reforms, and embed their knowledge and skills in a European society that challenges itself and continues to innovate. The Netherlands is a global player in the agro, food and horticultural sector and a major player in the export market of agricultural products. This sector is one of its main economic pillars. New knowledge is being developed as we speak, which is also an export product in high demand, providing sizeable employment. This is only possible because the sector is innovative and remains up-to-date. The peri-urban areas in the Netherlands (both urban and rural areas) are characterized by high population density. This necessitates thinking about manufacturing, food, logistics and water management(circular economy). Land-based education and life sciences in the Netherlands may appear to be specific, yet it is broad too: the primary sectors are included, as well as the manufacturing businesses and services associated with it. Participants learn to work in an innovative sector in a society in transition, bringing together multiple disciplines (cross-overs) and stakeholders. This education is practical and has a strong connection to the industry. During the Europea seminar five professorships, installed by the ministry of Economic Affairs, focused on transitions in the agro and food sector. The five professorships are posted at the Dutch Agricultural Universities of applied sciences, including teacher education for sustainable connected learning and development for professional education and business communities.
MULTIFILE
Food and the city has never been a more urgent theme than today, and The European Union’s priority to commit to innovation in this field will certainly enhance its economic and external strength and improve its competitive position in the world of food and life sciences. Europea Netherlands held a seminar on this topic in May 2016, during the Dutch EU presidency.To be part of this international endeavour, the Netherlands need to strengthen the digital market, support innovation in the internal market, boost domestic policy reforms, and embed their knowledge and skills in a European society that challenges itself and continues to innovate. The Netherlands is a global player in the agro, food and horticultural sector and a major player in the export market of agricultural products. This sector is one of its main economic pillars. New knowledge is being developed as we speak, which is also an export product in high demand, providing sizeable employment. This is only possible because the sector is innovative and remains up-to-date. The peri-urban areas in the Netherlands (both urban and rural areas) are characterized by high population density. This necessitates thinking about manufacturing, food, logistics and water management(circular economy). Land-based education and life sciences in the Netherlands may appear to be specific, yet it is broad too: the primary sectors are included, as well as the manufacturing businesses and services associated with it. Participants learn to work in an innovative sector in a society in transition, bringing together multiple disciplines (cross-overs) and stakeholders. This education is practical and has a strong connection to the industry. During the Europea seminar five professorships, installed by the ministry of Economic Affairs, focused on transitions in the agro and food sector. The five professorships are posted at the Dutch Agricultural Universities of applied sciences, including teacher education for sustainable connected learning and development for professional education and business communities.
MULTIFILE
Wind and solar power generation will continue to grow in the energy supply of the future, but its inherent variability (intermittency) requires appropriate energy systems for storing and using power. Storage of possibly temporary excess of power as methane from hydrogen gas and carbon dioxide is a promising option. With electrolysis hydrogen gas can be generated from (renewable) power. The combination of such hydrogen with carbon dioxide results in the energy carrier methane that can be handled well and may may serve as carbon feedstock of the future. Biogas from biomass delivers both methane and carbon dioxide. Anaerobic microorganisms can make additional methane from hydrogen and carbon dioxide in a biomethanation process that compares favourably with its chemical counterpart. Biomethanation for renewable power storage and use makes appropriate use of the existing infrastructure and knowledge base for natural gas. Addition of hydrogen to a dedicated biogas reactor after fermentation optimizes the biomethanation conditions and gives maximum flexibility. The low water solubility of hydrogen gas limits the methane production rate. The use of hollow fibers, nano-bubbles or better-tailored methane-forming microorganisms may overcome this bottleneck. Analyses of patent applications on biomethanation suggest a lot of freedom to operate. Assessment of biomethanation for economic feasibility and environmental value is extremely challenging and will require future data and experiences. Currently biomethanation is not yet economically feasible, but this may be different in the energy systems of the near future.
There is more to be learned from nature as a whole. In practice ‘nature’ is often used in teaching, training, consultancy and organisational development as a metaphor, as a source of inspiration or as an example for all kinds of processes, including leadership, cooperation, relationships and the development of organisations and society. Mainly ecological, and much less frequently biological, processes are generally involved here. The question has gradually arisen whether we can learn more from nature in the social environment than what we ‘see’ on the surface - which is often translated in metaphors. Seen more holistically, this is about the systemic side, the complexity, the context and the coherence. For example, can we demonstrate that applying fundamental ecological principles, such as cycles (learning, self-organising, selfregulating and self-sufficient capacity), succession, diversity and resilience, social and cooperative behaviour, interconnectedness and interdependency within an organisation leads to a sustainable organisation? Mauro Gallo is conducting research into the significance of technical innovation in and for the agricultural and food sector, and into the question whether biomimicry can in fact be backed up in such a way that it contributes to the social sciences domain. At the same time there is a clear teaching issue: Is it logical from the perspective of our green DNA to include biomimicry thinking in our teaching? Is it possible to learn to apply biomimicry, and can biomimicry be applied in teaching/learning? (How) can we apply biomimicry in green VMBO and MBO, pass it on to the teachers of the future in teacher training courses and include it in making current lecturers more professional? Is it conceivable that it could become an integral component of the curricula in green HBO?
MULTIFILE
Ghanaian farmers suffer from a decline in cocoa production partly due to damages and diseases from insect pests. To increase predation by bats on insects on the cocoa plantations we installed two different types of bat boxes on 15 plantations around the village of Buoyem. Bat activity, bat species composition (numbers of insectivorous and frugivorous bats) and insect abundance were measured before and after bat box installation. Insectivorous bats were present on all ofthe sampled plantations, namelyleaf-nosed bats (Hipposideros sp.), slit-faced bats (Nycteridae sp.), horseshoe bats (Rhinolophus sp.) and vesper bats (Vespertilionidae sp.). Furthermore, no correlation between insect abundance and bat activity could be detected. The bat boxes were not occupied yet during the research period since rainy season started in the second half of the measurements and bat activity decreases with increasing precipitation which is supported by our Un dings. Additionally, the available time period between in stallation and measuring of the effects of the boxes was very short when compared to similar researches. Bats alsohave different preferences per species for size and shape of bat boxes and the number of naturally available roosting sites also influences bat box occupancy. Our results suggest that bats are abundant above cocoa plantations in Buoyem and therefore bat boxes have the potential to be ahelpful tool in insect pest control.
MULTIFILE
Agricultural by-products, that is primary residue, industrial by-products and animal manure, are an important source of nutrients and carbon for maintaining soil quality and crop production but can also be valorised through treatment pathways such as fermentation, incineration or a combination of these called bio-refinery. Here, we provide an overview of opportunity to reduce environmental impact of valorising agricultural by-products. We estimate the available by-products in Northwestern Europe as a case study and the maximum and realistic greenhouse gas reduction potentials. Availability, collectability, the original use and environmental impact including land use changes, soil carbon sequestration and pollution swapping are discussed as critical factors when valorising agricultural by-products.
MULTIFILE