KLM has revealed the plan to downsize the full-freight cargo fleet in Schiphol Airport, for that reason the company requires to explore the consequences of moving the cargo transported by the full freighters into the bellies of the passenger flights. In this study, the authors analyze the implications of this decision by considering the variability of the load factors and the impact that replacing old aircraft might have. The study addresses how the transition towards the belly operation should impact the current operation of KLM at Schiphol. Our study show that the replacement of old aircraft with new 787s and 777s will have significant effect on the cargo capacity of the company. The results rise the discussion on future problems to be faced and how to make the transition from full freighter to belly operation.
This study examines the effect of seat assignment strategies on the transfer time of connecting passengers at a hub airport. Passenger seat allocation significantly influences disembarkation times, which can increase the risk of missed connections, particularly in tight transfer situations. We propose a novel seat assignment strategy that allocates seats to nonpaying passengers after check-in, prioritising those with tight connections. This approach diverges from traditional methods focused on airline turnaround efficiency, instead optimizing for passenger transfer times and reducing missed connections. Our simulation, based on real-world data from Paris-Charles de Gaulle airport, demonstrates that this passenger-centric model decreases missed connections by 12%, enhances service levels, reduces airline compensation costs, and improves airport operations. The model accounts for variables such as seat occupancy,luggage, and passenger type (e.g., business, leisure) and is tested under various scenarios, including air traffic delays.
MULTIFILE