KLM is downsizing the full-freight cargo fleet in Schiphol Airport, for that reason it is important for the company and the airport to explore the consequences of moving the cargo transported by the full freighters into the bellies of the passenger flights. The consequences of this action in terms of capacity and requirements are still unknown. The current study illustrates how to analyse the uncertainty present in the system for identifying the limitations and potential consequences of the reduction of full freighter fleet. The options we identify for coping with the current demand is by adjusting their load factors or increase the number of flights. The current model includes the airside operation of the airport, the truck movements and the traffic that arrives at Schiphol which allows addressing the impact of uncertainties of the operation as well as the limitations and potential problems of the phasing-out action.
This study examines the effect of seat assignment strategies on the transfer time of connecting passengers at a hub airport. Passenger seat allocation significantly influences disembarkation times, which can increase the risk of missed connections, particularly in tight transfer situations. We propose a novel seat assignment strategy that allocates seats to nonpaying passengers after check-in, prioritising those with tight connections. This approach diverges from traditional methods focused on airline turnaround efficiency, instead optimizing for passenger transfer times and reducing missed connections. Our simulation, based on real-world data from Paris-Charles de Gaulle airport, demonstrates that this passenger-centric model decreases missed connections by 12%, enhances service levels, reduces airline compensation costs, and improves airport operations. The model accounts for variables such as seat occupancy,luggage, and passenger type (e.g., business, leisure) and is tested under various scenarios, including air traffic delays.
MULTIFILE