Airport capacity has become a constraint in the air transportation networks, due to the growth of air traffic demand and the lack of resources able to accommodate this demand. This paper presents the algorithmic implementations of a decision support system for making a more efficient use of the airspace and ground capacity. The system would be able to provide support for air traffic controllers in handling large amount of flights while reducing to a minimum the potential conflicts. In this framework, airspace together with ground airport operations are considered. Conflicts are defined as separation minima violation between aircraft for what concerns airspace and runways, and as capacity overloads for taxiway network and terminals. The methodology proposed in this work consists of an iterative approach that couples optimization and simulation to find solutions that are resilient to perturbations due to the uncertainty present in different phases of the arrival and departure process. An optimization model was employed to find a (sub)optimal solution while a discrete event-based simulation model evaluated the objective function. By coupling simulation with optimization, we generate more robust solutions resilient to variability in the operations, this is supported by a case study of Paris Charles de Gaulle Airport.
DOCUMENT
The EU project X-TEAM D2D focuses on future seamless door-to-door mobility, considering the experiences from Air Traffic Management and the currently available and possible future transport modalities in overall multimodal traffic until 2050. This paper deals with developing a Concept of Operations of an intermodal transport system with special consideration of the pabengers' satisfaction with up to 4-hour journeys. For this purpose, the influences of quality management systems and other organizational facilities on the quality of pabenger travel in the transport system were examined. In the study, integration of various management systems, like resources, traffic information, energy, fleet emergency calls, security and infrastructure, and applications such as weather information platforms and tracking systems, is expected.
DOCUMENT
Two key air pollutants that affect asthma are ozone and particle pollution. Studies show a direct relationship between the number of deaths and hospitalizations for asthma and increases of particulate matter in the air, including dust, soot, fly ash, diesel exhaust particles, smoke, and sulfate aerosols. Cars are found to be a primary contributor to this problem. However, patient awareness of the link is limited. This chapter begins with a general discussion of vehicular dependency or ‘car culture’, and then focuses on the discussion of the effects of air pollution on asthma in the Netherlands. I argue that international organizations and patient organizations have not tended to put pressure on air-control, pollution-control or environmental standards agencies, or the actual polluters. While changes in air quality and the release of greenhouse gases are tied to practices like the massive corporate support for the ongoing use of motor vehicles and the increased prominence of ‘car culture’ globally, patient organizations seem more focused on treating the symptoms rather than addressing the ultimate causes of the disease. Consequently, I argue that to fully address the issue of asthma the international health organizations as well as national health ministries, patient organizations, and the general public must recognize the direct link between vehicular dependency and asthma. The chapter concludes with a recommendation for raising environmental health awareness by explicitly linking the vehicular dependency to the state of poor respiratory health. Strategic policy in the Netherlands then should explicitly link the present pattern of auto mobility to public health. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118786949 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE