The aviation industry needs led to an increase in the number of aircraft in the sky. When the number of flights within an airspace increases, the chance of a mid-air collision increases. Systems such as the Traffic Alert and Collision Avoidance System (TCAS) and Airborne Collision Avoidance System (ACAS) are currently used to alert pilots for potential mid-air collisions. The TCAS and the ACAS use algorithms to perform Aircraft Trajectory Predictions (ATPs) to detect potential conflicts between aircrafts. In this paper, three different aircraft trajectory prediction algorithms named Deep Neural Network (DNN), Random Forest (RF) and Extreme Gradient Boosting were implemented and evaluated in terms of their accuracy and robustness to predict the future aircraft heading. These algorithms were as well evaluated in the case of adversarial samples. Adversarial training is applied as defense method in order to increase the robustness of ATPs algorithms against the adversarial samples. Results showed that, comparing the three algorithm’s performance, the extreme gradient boosting algorithm was the most robust against adversarial samples and adversarial training may benefit the robustness of the algorithms against lower intense adversarial samples. The contributions of this paper concern the evaluation of different aircraft trajectory prediction algorithms, the exploration of the effects of adversarial attacks, and the effect of the defense against adversarial samples with low perturbation compared to no defense mechanism.
DOCUMENT
For long flights, the cruise is the longest phase and where the largest amount of fuel is consumed. An in-cruise optimization method has been implemented to calculate the optimal trajectory that reduces the flight cost. A three-dimensional grid has been created, coupling lateral navigation and vertical navigation profiles. With a dynamic analysis of the wind, the aircraft can perform a horizontal deviation or change altitudes via step climbs to reduce fuel consumption. As the number of waypoints and possible step climbs is increased, the number of flight trajectories increases exponentially; thus, a genetic algorithm has been implemented to reduce the total number of calculated trajectories compared to an exhaustive search. The aircraft’s model has been obtained from a performance database, which is currently used in the commercial flight management system studied in this paper. A 5% average flight cost reduction has been obtained.
MULTIFILE
This paper presents an innovative approach that combines optimization and simulation techniques for solving scheduling problems under uncertainty. We introduce an Opt–Sim closed-loop feedback framework (Opt–Sim) based on a sliding-window method, where a simulation model is used for evaluating the optimized solution with inherent uncertainties for scheduling activities. The specific problem tackled in this paper, refers to the airport capacity management under uncertainty, and the Opt–Sim framework is applied to a real case study (Paris Charles de Gaulle Airport, France). Different implementations of the Opt–Sim framework were tested based on: parameters for driving the Opt–Sim algorithmic framework and parameters for riving the optimization search algorithm. Results show that, by applying the Opt–Sim framework, potential aircraft conflicts could be reduced up to 57% over the non-optimized scenario. The proposed optimization framework is general enough so that different optimization resolution methods and simulation paradigms can be implemented for solving scheduling problems in several other fields.
DOCUMENT