Air transportation has grown in an unexpected way during last decades and is expected to increase even more in the next years. Traffic growth tendencies forecast an expansion in the demand and greater aviation connectivity, but also higher workload to the different airspace users, especially for airport and services. Therefore, it is essential to employ strategies designed to use efficiently valuable corporate resource. Airport authorities around the world are investing in large capital projects, including new or improved runways, terminal expansions, and entirely new airports. However, this effort is sometimes limited due to their geographic location. In this work, two main objectives are pursued: first, to highlight the importance of the industry by exposing the current situation and future trends all over the world focusing in the Mexican industry; and second, to introduce a simulation model which can be used as a decision making tool for the upcoming demand. The analysis of the scenarios illustrates how to develop strategies to cope with the different airspace user's needs.
MULTIFILE
Mexico City airport is located close to the center ofthe city and is Mexico’s busiest airport which is consideredcongested. One of the consequences of airport congestion areflight delays which in turn decrease costumer’s satisfaction. Airtraffic control has been using a ground delay program as a toolfor alleviating the congestion problems, particularly in the mostcongested slots of the airport. This paper uses a model-basedapproach for analyzing the effectiveness of the ground delayprogram and rules. The results show that however the rulesapplied seem efficient, there is still room for improvement inorder to make the traffic management more efficient.
MULTIFILE
Amsterdam Airport Schiphol has faced capacity constraints, particularly during peak periods. At the security screening checkpoint, this is due to the growing number of passengers and a shortage of security staff. To improve operating performance, there is a need to integrate newer technologies that improve passing times. This research presents a discrete event simulation (DES) model for the inclusion of a shoe scanner at the security screening checkpoint at Amsterdam Airport Schiphol. Simulation is a frequently used method to assess the influence of process changes, which, however, has not been applied for the inclusion of shoe scanners in airport security screenings yet. The simulation model can be used to assess the implementation and potential benefits of an optical shoe scanner, which is expected to lead to significant improvements in passenger throughput and a decrease in the time a passenger spends during the security screening, which could lead to improved passenger satisfaction. By leveraging DES as a tool for analysis, this study provides valuable insights for airport authorities and stakeholders aiming to optimize security screening operations and enhance passenger satisfaction.