Dit eindrapport behandelt het onderzoek van CDM@Airports, gericht op Collaborative Decision Making in de logistieke processen van luchtvrachtafhandeling op Nederlandse luchthavens. Dit project, met een looptijd van ruim twee jaar, is gestart op 8 november 2021 en geëindigd op 31 december 2023. HET PROJECT CDM@AIRPORTS OMVAT DRIE WERKPAKKETTEN: 1. Projectmanagement, dit betreft de algehele aansturing van het project incl. stuurgroep, werkgroep en stakeholdermanagement. 2. Onderzoeksactiviteiten, bestaande uit a) cross-chain-samenwerking, b) duurzaamheid en c) adoptie van digitale oplossingen voor datagedreven logistiek. 3. Management van een living lab, een ‘quadruple-helix-setting’ die fysieke en digitale leeromgevingen integreert voor onderwijs en multidisciplinair toegepast onderzoek.
MULTIFILE
With the increase of needs for controlling the passengers that use different modes of transport such as airports, ports, trains, or future ones as hyper loops, security facilities are a key element to be optimized. In the current study, we present an analysis of a security area within an airport with particular restrictions. To improve the capacity, different categories and policies were devised for processing passengers and we propose to adapt the system to these categories and policies. The results indicated that, by designing a proper category in combination with novel technology, it is possible to increase the capacity to values of 2 digits (in terms of passengers/day). As a proof-of-concept, we use a case study of an area within an airport in Mexico based on data and layout of early 2019.
DOCUMENT
Airport infrastructure evolves alongside legacy systems and processes that limits the ability to fully realise the efficiency potential of costly renovations. Airports will continue to take advantage of current and future technologies. Nevertheless, for such systems to work as efficiently as possible, the passenger should play an active role. This paper analyzes the effect of a new type of emerging ’smart passenger’, one that cooperates to be enabled to use the most efficient processes for a seamless experience. The technological and behavioural enhancements areassessed with the simulation of two case studies: London City and Palma de Mallorca airports. Results indicate that the introduction of this type of passenger brings benefit in terms of level of service indicators not only to this type of passenger but also to the traditional ones (business, visitor and leisure). However,the impact differs depending on the type of airport and the proportion of ’smart passengers’.
DOCUMENT
The carbon dioxide emissions of aviation play an important role in many studies and databases. But unfortunately, a detailed and reliable overview of emission factors, and algorithms to calculate these based on factors like seating class, airline type, and aircraft type, did not exist for the Dutch aviation sector. This study calculated such emissions for a sample of over 5000 international flights in 2019 from the 5 Dutch main airports. The data about the flights were gathered from FlightRadar and enriched with seating capacities specific to the airline performing ten flights. in this way, emissions could be assigned to each of the four seating classes (economy, economy-plus, business and first). By aggregating the data to airline types and distance of the flight, algorithms were developed that help researchers and policy-makers to calculate the emissions. Societal IssueThe carbon footprint of Dutch aviation is about 10% of the total footprint. To prevent the world to exceed 1.5 degrees C and enter 'dangerous climate change', emissions need to decline to zero before 2050. This study helps assess and understand current aviation emissions from Dutch airports.Benefit to societyThe results were an update of emissions factors as used by the funding organisation, MilieuCentraal, and the official emission factors list (https://www.co2emissiefactoren.nl/lijst-emissiefactoren/).
INCLAVI will address the skills mismatches that exist in the aviation sector related to the freedom of movement of persons with disabilities and accessibility requirements in line with the EC Strategy for the Rights of Persons with Disabilities 2021-2030.The project accomplishes this through rigorous cooperation between key global industry and labour market actors combined with a world-class HEI and VET consortium. INCLAVI will also further improve the collaboration between HEIs and VET.INCLAVI will design and co-create a new training curriculum utilising expertise from HEI, VET and Industry Actors to support the reskilling of aviation sector employees and key target groups who have a role in the passenger journey of PwDs from door to door. The training will address students and professionals in areas of work related to travel agencies, airports, and airlines.
In the SensEQuake project, the Research Centre for Built Environment NoorderRuimte of Hanze University of Applied Sciences, StabiAlert, Target Holding and NHL Stenden Leeuwarden are investigating the following question:How can we provide relevant and understandable information to support decision makers when an earthquake has occurred?In case of a crisis such as an earthquake, parties such as the provincial government, large company sites, airports or hospitals need information on the scope and severity of the effect of the crisis.Systematic updates of the actual situation on site are of the essence for emergency services. At present only a small amount of the data necessary for this information needed is being collected. And the data that is collected is not processed into relevant and easily understandable information for the decision makers. This project aims to fill this gap.The objective of the project is to integrate the existing sensor technologies into a decision support system, allowing a wider and more immediate use of sensor data for public interest, particularly in crisis times.A heat-map will be produced based on scenario earthquakes and loss (hazard and risk assessment) estimation tools. After running several scenario quakes, critical points in respect to the expected damages and the distribution of existing sensors will be defined. More sensors in critical locations will also be placed to create a high enough resolution.