Since the European Union wants to reduce the oil dependence of the transportation system, the uptake of alternative vehicle technologies are stimulated in the member states. In the Netherlands, stimulation is already largely implemented in the form of a comprehensive charging infrastructure. This infrastructure is widely used by the electric vehicle drivers and thus there may occur a form of competition for the charging points. In this paper we address this problem by predicting the short-term availability of charging points at a given location and time by using the historical charging data in a space-time series model. The model shows better accuracy with respect to a naive method for short term predictions up to one day. This will allow charging point operators to provide customers with the service of looking up estimated charging point availability in the nearby future.
The transition to a biobased economy necessitates utilizing renewable resources as a sustainable alternative to traditional fossil fuels. Bioconversion is a way to produce many green chemicals from renewables, e.g., biopolymers like PHAs. However, fermentation and bioconversion processes mostly rely on expensive, and highly refined pure substrates. The utilization of crude fractions from biorefineries, especially herbaceous lignocellulosic feedstocks, could significantly reduce costs. This presentation shows the microbial production of PHA from such a crude stream by a wild-type thermophilic bacterium Schlegelella thermodepolymerans [1]. Specifically, it uses crude xylose-rich fractions derived from a newly developed biorefinery process for grassy biomasses (the ALACEN process). This new stepwise mild flow-through biorefinery approach for grassy lignocellulosic biomass allows the production of various fractions: a fraction containing esterified aromatics, a monomeric xylose-rich stream, a glucose fraction, and a native-like lignin residue [2]. The crude xylose-rich fraction was free of fermentation-inhibiting compounds meaning that the bacterium S.thermodepolymerans could effectively use it for the production of one type of PHA, polyhydroxybutyrate. Almost 90% of the xylose in the refined wheat straw fraction was metabolized with simultaneous production of PHA, matching 90% of the PHA production per gram of sugars, comparable to PHA yields from commercially available xylose. In addition to xylose, S. thermodepolymerans converted oligosaccharides with a xylose backbone (xylans) into fermentable xylose, and subsequently utilized the xylose as a source for PHA production. Since the xylose-rich hydrolysates from the ALACEN process also contain some oligomeric xylose and minor hemicellulose-derived sugars, optimal valorization of the C5-fractions derived from the refinery process can be obtained using S. thermodepolymerans. This opens the way for further exploration of PHA production from C5-fractions out of a variety of herbaceous lignocellulosic biomasses using the ALACEN process combined with S. thermodepolymerans. Overall, the innovative utilization of renewable resources in fermentation technology, as shown herein, makes a solid contribution to the transition to a biobased economy.[1] W. Zhou, D.I. Colpa, H. Permentier, R.A. Offringa, L. Rohrbach, G.J.W. Euverink, J. Krooneman. Insight into polyhydroxyalkanoate (PHA) production from xylose and extracellular PHA degradation by a thermophilic Schlegelella thermodepolymerans. Resources, Conservation and Recycling 194 (2023) 107006, ISSN 0921-3449, https://doi.org/10.1016/j.resconrec.2023.107006. [2] S. Bertran-Llorens, W.Zhou. M.A.Palazzo, D.I.Colpa, G.J.W.Euverink, J.Krooneman, P.J.Deuss. ALACEN: a holistic herbaceous biomass fractionation process attaining a xylose-rich stream for direct microbial conversion to bioplastics. Submitted 2023.
LINK
The Interoceanic corridor of Mexico stands as a pivotal infrastructure project poised to significantly enhance Mexico's national and regional economy. Anticipated to start the operations in 2025 under the auspice of the national government, this corridor represents a strategic counterpart to the Panama Canal, which faces capacity constraints due to climate change and environmental impacts. Positioned as a promising alternative for transporting goods from Asia to North America, this corridor will offer a new transport route, yet its real operational capacity and spatial impacts remains uncertain. In this paper, the authors undertake a preliminary, informed analysis leveraging publicly available data and other specific information about infrastructure capacities and economic environment to forecast the potential throughput of this corridor upon full operationalization and in the future. Applying simulation techniques, the authors simulate the future operations of the corridor according to different scenarios to offer insights into its potential capacity and impacts. Furthermore, the paper delves into the opportunities and challenges that are inherent in this project and gives a comprehensive analysis of its potential impact and implications.
MULTIFILE
Dit project richt zich op de ontwikkeling van de biotechnologische en chemische procesvoering om op basis van mycelium een alternatief voor leer te produceren. In vergelijking met leer is het voordeel van mycelium dat geen runderen nodig zijn, de productie kan plaatsvinden onder industriële condities en met gebruik van reststromen, de CO2 uitstoot alsook hoeveelheid afval verlaagd wordt, en het gebruik van toxische stoffen zoals chroom wordt vervangen door biobased alternatieven. In het project zullen de procescondities worden bepaald die leiden tot de vorming van optimaal mycelium. Daartoe zullen twee verschillende schimmels worden gekweekt in bioreactoren bij de Hogeschool Arnhem Nijmegen (HAN), waarbij specifiek de effecten van de procescondities (temperatuur, pH, shear, beluchting) en de samenstelling van het kweekmedium op groei van het mycelium en materiaal eigenschappen zullen worden onderzocht. De meest optimale condities zullen vervolgens worden opgeschaald. Op het op deze wijze verkregen materiaal zal Mylium BV een aantal nabehandelingsstappen uitvoeren om de sterkte, elasticiteit, en duurzaamheid van het product te vergroten. Daartoe worden biobased plasticizers, cross-linkers en/of flexibility agents gebruikt. Het resulterende eindproduct zal middels specifiek fysieke testen vergeleken worden met leer alsook worden voorgelegd aan mogelijke klanten. Indien beide resultaten positief zijn kan het betreffende proces na het project verder worden opgeschaald voor toepassing naar de markt.
The growing demand for both retrofitting and refitting, driven by an aging global fleet and decarbonization efforts, including the need to accommodate alternative fuels such as LNG, methanol, and ammonia, offers opportunities for sustainability. However, they also pose challenges, such as emissions generated during these processes and the environmental impacts associated with the disposal of old components. The region Rotterdam and Drechtsteden form a unique Dutch maritime ecosystem of port logistics, shipbuilding, offshore operations, and innovation facilities, supported by Europe’s largest port and world-class infrastructure connecting global trade routes. The Netherlands’ maritime sector, including the sector concentrated in Zuid-Holland, is facing competition from subsidized Asian companies, leading to a steep decline in Europe’s shipbuilding market share from 45% in the 1980s to just 4% in 2023. Nonetheless, the shift toward climate-neutral ships presents economic opportunities for Dutch maritime companies. Thus, developing CE approaches to refitting is essential for promoting sustainability and addressing the pressing environmental and competitive challenges facing the sector and has led companies in the sector to establish the Open Joint Industry Project (OJIP) called Circolab of which this PD forms the core.
The maritime transport industry is facing a series of challenges due to the phasing out of fossil fuels and the challenges from decarbonization. The proposal of proper alternatives is not a straightforward process. While the current generation of ship design software offers results, there is a clear missed potential in new software technologies like machine learning and data science. This leads to the question: how can we use modern computational technologies like data analysis and machine learning to enhance the ship design process, considering the tools from the wider industry and the industry’s readiness to embrace new technologies and solutions? The obbjective of this PD project is to bridge the critical gap between the maritime industry's pressing need for innovative solutions for a more agile Ship Design Process; and the current limitations in software tools and methodologies available via the implementation into Ship Design specific software of the new generation of computational technologies available, as big data science and machine learning.