Wireless sensor networks are becoming popular in the field of ambient assisted living. In this paper we report our study on the relationship between a functional health metric and features derived from the sensor data. Sensor systems are installed in the houses of nine people who are also quarterly visited by an occupational therapist for functional health assessments. Different features are extracted and these are correlated with a metric of functional health (the AMPS). Though the sample is small, the results indicate that some features are better in describing the functional health in the population, but individual differences should also be taken into account when developing a sensor system for functional health assessment.
DOCUMENT
This paper describes the approach used to identify elderly people’s needs and attitudes towards applying ambient sensor systems for monitoring daily activities in the home. As elderly are typically unfamiliar with such ambient technology, interactive tools for explicating sensor monitoring –an interactive dollhouse and iPad applications for displaying live monitored sensor activity data– were developed and used for this study. Furthermore, four studies conducted by occupational therapists with more than 60 elderly participants –including questionnaires (n=41), interviews (n=6), user sessions (n=14) and field studies (n=2)– were conducted. The experiences from these studies suggest that this approach helped to democratically engage the elderly as end-user and identify acceptance issues.
DOCUMENT
Ambient monitoring systems offer great possibilities for health trend analysis in addition to anomaly detection. Health trend analysis helps care professionals to evaluate someones functional health and direct or evaluate the choice of interventions. This paper presents one case study of a person that was followed with an ambient monitoring system for almost three years and another of a person that was followed for over a year. A simple algorithm is applied to make a location based data representation. This data is visualized for care professionals, and used for inspecting the regularity of the pattern with means of principal component analysis (PCA). This paper provides a set of tools for analyzing longitudinal behavioral data for health assessments. We advocate a standardized data collection procedure, particularly the health metrics that could be used to validate health focused sensor data analyses.
DOCUMENT
Ambient activity monitoring systems produce large amounts of data, which can be used for health monitoring. The problem is that patterns in this data reflecting health status are not identified yet. In this paper the possibility is explored of predicting the functional health status (the motor score of AMPS = Assessment of Motor and Process Skills) of a person from data of binary ambient sensors. Data is collected of five independently living elderly people. Based on expert knowledge, features are extracted from the sensor data and several subsets are selected. We use standard linear regression and Gaussian processes for mapping the features to the functional status and predict the status of a test person using a leave-oneperson-out cross validation. The results show that Gaussian processes perform better than the linear regression model, and that both models perform better with the basic feature set than with location or transition based features. Some suggestions are provided for better feature extraction and selection for the purpose of health monitoring. These results indicate that automated functional health assessment is possible, but some challenges lie ahead. The most important challenge is eliciting expert knowledge and translating that into quantifiable features.
DOCUMENT
Sensor systems can be deployed in the homes of older adults living alone for functional health assessments. Their information is very useful for health care specialists. The problem lies in developing person independent models while facing a large variability in behavior. We address this problem by, first, proposing a new feature extraction method for data from ambient motion sensors. The method uses functional similarities between houses and daily structure to extract meaningful features. Second, we propose a change-based approach for analyzing data, taking difference scores of both the sensor features and health metrics. To evaluate our approach, experiments on longitudinal data were conducted, where the relationship between sensor data and health measurements was modeled with linear regression and (nonlinear) regression forests. These experiments show that the change-based approach yields better results and that the resulting models can be used as a reliable metric for (functional) health. In addition, feature analysis can help health care specialists understand relevant aspects of behavior. Prediction of health metrics is possible even with simple sensors. With such sensors, it is possible to detect problems and health decline in an early stage. This will have great impact on clinical practice.
DOCUMENT
Purpose Building services technologies such as home automation systems and remote monitoring are increasingly used to support people in their own homes. In order for these technologies to be fully appreciated by the endusers (mainly older care recipients, informal carers and care professionals), user needs should be understood1,2. In other words, supply and demand should match. Steele et al.3 state that there is a shortage of studies exploring perceptions of older users towards technology and the acceptance or rejection thereof. This paper presents an overview of user needs in relation to ambient assisted living (AAL) projects, which aim to support ageing-in-place in The Netherlands. Method A literature survey was made of Dutch AAL projects, focusing on user needs. A total of 7 projects concerned with older persons, with and without dementia, were included in the overview. Results & Discussion By and large technology is considered to be a great support in enabling people to age-in-place. Technology is, therefore, accepted and even embraced by many of the end-users and their relatives. Technology used for safety, security, and emergency response is most valued. Involvement of end-users improves the successful implementation of ambient technology. This is also true for family involvement in the case of persons with dementia. Privacy is mainly a concern for care professionals. This group is also key to successful implementation, as they need to be able to work with the technology and provide information to the end-users. Ambient technologies should be designed in an unobtrusive way, in keeping with indoor design, and be usable by persons with sensory of physical impairments. In general, user needs, particularly the needs of informal carers and care professionals, are an understudied topic. These latter two groups play an important role in implementation and acceptance among care recipients. They should, therefore, deserve more attention from the research community.
LINK
Purpose People with dementia (PwD) often present Behavioral and Psychological Symptoms of Dementia, which include agitation, apathy, and wandering amongst others, also known as challenging behaviors (CBs). These CBs worsen the quality of life (QoL) of the PwD and are a major source/reason of (increased) caregiver burden. The intricate nature of the symptoms implies that there is no “one size fits all solution”, and necessitates tailored approaches for both PwDs and caregivers. To timely prevent these behaviors assistive technology can be utilized to guide caregivers by enabling remote monitoring of contextual, environmental, and behavioral parameters, and subsequently alarming nurses on early-stage behavioral changes prior to the presentation of CBs. Eventually, the system should propose an intervention/action to prevent escalation. In turn, improvement in QoL for both caregivers and PwD living in nursing homes (NHs) is expected. In the current project “MOnitoring Onbegrepen Gedrag bij Dementie met sensortechnologie” (MOOD-Sense), we aim to develop such a monitoring system. The strengths of this new monitoring system lie in its ability to align with the individual needs of the PwD, utilization of a combination of wearables and ambient sensors to obtain contextual data, such as location or sound, and predict or monitor CBs individually rather than in groups, thus facilitating person-centered care, based on ontological reasoning. The project is divided into three parts, Toolbox A, B and C. Toolbox A focuses on obtaining insight in which behaviors are challenging according to nurses and how they are described. Previous studies utilize clinical terminology to describe or classify behavior, we aim to employ concrete descriptions of behavior that are observable and independent of clinical terminology, aligning with nurses who are often the first to notice behavior and can be operationalized such that it can also be aligned with sensor data. As a result, an ontology will be developed based on the data such that sensor data can be integrated into the same conceptual information that standardizes the communication in our monitoring system. Toolbox B focuses on translating data coming from various sensors into the concepts expressed in the ontology, and timely communicate situations of interest to the caregivers. In Toolbox C the focus is exploring interventions/actions employed in practice to prevent CBs. Method In Toolbox A we used a qualitative approach to collect descriptions of CBs. For this purpose, we employed focus groups (FGs) with nursing staff who provide daily care to PwD. In Toolbox B pilot studies were conducted. A set of experiments using sensors in NHs were performed. During each pilot, multiple PwD with CBs in NHs were monitored with both ambient and wearables sensors. The pilots were iteratively approached, which means that insights from previous pilot studies were used to improve consecutive pilot studies. Lastly, the elaboration of Toolbox C is ongoing. Results and Discussion Regarding Toolbox A four FGs were conducted during the period from January 2023 to May 2024. Each FG was comprised of four nurses (n = 16). From the FGs we gained insights into behavioral descriptions and the context of CBs. Although data analysis has to be performed yet, there are indications that changes preceding CBs can be observed, such as frowning or clenching fists for agitation or aggression. Further results will be available soon. Regarding Toolbox B a monitoring system, based on sensors, is developed iteratively (see Figure 1) and piloted in three consecutive NHs from January 2021 to December 2023. Each pilot was comprised of two PwD (n = 6). Analysis of sensor data is ongoing.
LINK
An energy harvesting device for obtaining energy from drops without needing of moving the drops along the device, in a reduced scale and combinable with othertypes of harvesting devices, the energy harvesting device comprising one or more triboelectric generators comprising a bottom electrode, a friction or triboelectric element placed over the bottom electrode, and at least two top electrodes placed over the triboelectric element and defining at least one gap between them, exposing the triboelectric element to the external environment so that on contacting a drop of liquid makes an electrical connection between the top electrodes varying the capacitance of the triboelectric generators and alternatively for functioning as a power unit for a sensor or as a self-powered sensor producing an electrical signal generated by the contact of the liquid with the electrodes.
DOCUMENT
Ambient intelligence technologies are a means to support ageing-in-place by monitoring clients in the home. In this study, monitoring is applied for the purpose of raising an alarm in an emergency situation, and thereby, providing an increased sense of safety and security. Apart from these technological solutions, there are numerous environmental interventions in the home environment that can support people to age-in-place. The aim of this study was to investigate the needs and motives, related to ageing-in-place, of the respondents receiving ambient intelligence technologies, and to investigate whether, and how, these technologies contributed to aspects of ageing-in-place. This paper presents the results of a qualitative study comprised of interviews and observations of technology and environmental interventions in the home environment among 18 community-dwelling older adults with a complex demand for care.
DOCUMENT
The project discussed in this paper is aimed at increasing people’s understanding of the existence and desired workings of ambient technology in the home by demonstrating its potential. For this purpose, an interactive dollhouse is presented. The dollhouse, a miniature model of a sensor-equipped home, was developed and used to engage elderly users in the design of an ambient monitoring system. This paper explains the design of the interactive dollhouse and the ways it was used as an elderly-centered design method for increasing understanding of the desired workings of ambient monitoring in the home.
DOCUMENT