Learning analytics can help higher educational institutions improve learning. Its adoption, however, is a complex undertaking. The Learning Analytics Capability Model describes what 34 organizational capabilities must be developed to support the successful adoption of learning analytics. This paper described the first iteration to evaluate and refine the current, theoretical model. During a case study, we conducted four semi-structured interviews and collected (internal) documentation at a Dutch university that is mature in the use of student data to improve learning. Based on the empirical data, we merged seven capabilities, renamed three capabilities, and improved the definitions of all others. Six capabilities absent in extant learning analytics models are present at the case organization, implying that they are important to learning analytics adoption. As a result, the new, refined Learning Analytics Capability Model comprises 31 capabilities. Finally, some challenges were identified, showing that even mature organizations still have issues to overcome.
Full tekst beschikbaar voor gebruikers van Linkedin. Driven by technological innovations such as cloud and mobile computing, big data, artificial intelligence, sensors, intelligent manufacturing, robots and drones, the foundations of organizations and sectors are changing rapidly. Many organizations do not yet have the skills needed to generate insights from data and to use data effectively. The success of analytics in an organization is not only determined by data scientists, but by cross-functional teams consisting of data engineers, data architects, data visualization experts, and ("perhaps most important"), Analytics Translators.
LINK
Although governments are investing heavily in big data analytics, reports show mixed results in terms of performance. Whilst big data analytics capability provided a valuable lens in business and seems useful for the public sector, there is little knowledge of its relationship with governmental performance. This study aims to explain how big data analytics capability led to governmental performance. Using a survey research methodology, an integrated conceptual model is proposed highlighting a comprehensive set of big data analytics resources influencing governmental performance. The conceptual model was developed based on prior literature. Using a PLS-SEM approach, the results strongly support the posited hypotheses. Big data analytics capability has a strong impact on governmental efficiency, effectiveness, and fairness. The findings of this paper confirmed the imperative role of big data analytics capability in governmental performance in the public sector, which earlier studies found in the private sector. This study also validated measures of governmental performance.
MULTIFILE
The focus of this project is on improving the resilience of hospitality Small and Medium Enterprises (SMEs) by enabling them to take advantage of digitalization tools and data analytics in particular. Hospitality SMEs play an important role in their local community but are vulnerable to shifts in demand. Due to a lack of resources (time, finance, and sometimes knowledge), they do not have sufficient access to data analytics tools that are typically available to larger organizations. The purpose of this project is therefore to develop a prototype infrastructure or ecosystem showcasing how Dutch hospitality SMEs can develop their data analytic capability in such a way that they increase their resilience to shifts in demand. The one year exploration period will be used to assess the feasibility of such an infrastructure and will address technological aspects (e.g. kind of technological platform), process aspects (e.g. prerequisites for collaboration such as confidentiality and safety of data), knowledge aspects (e.g. what knowledge of data analytics do SMEs need and through what medium), and organizational aspects (what kind of cooperation form is necessary and how should it be financed).
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. While extensive attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC.