Anxiety among pregnant women can significantly impact their overall well-being. However, the development of data-driven HCI interventions for this demographic is often hindered by data scarcity and collection challenges. In this study, we leverage the Empatica E4 wristband to gather physiological data from pregnant women in both resting and relaxed states. Additionally, we collect subjective reports on their anxiety levels. We integrate features from signals including Blood Volume Pulse (BVP), Skin Temperature (SKT), and Inter-Beat Interval (IBI). Employing a Support Vector Machine (SVM) algorithm, we construct a model capable of evaluating anxiety levels in pregnant women. Our model attains an emotion recognition accuracy of 69.3%, marking achievements in HCI technology tailored for this specific user group. Furthermore, we introduce conceptual ideas for biofeedback on maternal emotions and its interactive mechanism, shedding light on improved monitoring and timely intervention strategies to enhance the emotional health of pregnant women.
DOCUMENT
Objective: To examine the underlying factor structure and psychometric properties of the Assessment of Self-management in Anxiety and Depression (ASAD) questionnaire, which was specifically designed for patients with (chronic) anxiety and depressive disorders. Moreover, this study assesses whether the number of items in the ASAD can be reduced without significantly reducing its precision. Methods: The ASAD questionnaire was completed by 171 participants across two samples: one sample comprised patients with residual anxiety or depressive symptoms, while the other consisted of patients who have been formally diagnosed with a chronic anxiety or depressive disorder. All participants had previously undergone treatment. Both exploratory (EFA) and confirmatory factor analyses (CFA) were conducted. Internal consistency and test–retest reliability were also assessed. Results: Both EFA and CFA indicated three solid factors: Seeking support, Daily life strategies and Taking ownership [Comparative Fit Index = 0.80, Tucker Lewis Index = 0.78, Root Mean Square Error of Approximation = 0.09 (CI 0.08–1.00), Standardized Root Mean Square Residual = 0.09 ($2 = 439.35, df = 168)]. The ASAD was thus reduced from 45 items to 21 items, which resulted in the ASAD-Short Form (SF). All sub-scales had a high level of internal consistency (> a = 0.75) and test–retest reliability (ICC > 0.75). Discussion: The first statistical evaluation of the ASAD indicated a high level of internal consistency and test–retest reliability, and identified three distinctive factors. This could aid patients and professionals’ assessment of types of self-management used by the patient. Given that this study indicated that the 21-item ASAD-SF is appropriate, this version should be further explored and validated among a sample of patients with (chronic or partially remitted) anxiety and depressive disorders. Alongside this, to increase generalizability, more studies are required to examine the English version of the ASAD within other settings and countries.
DOCUMENT
Abstract Objectives The aim of this review is to establish the effectiveness of psychological relapse prevention interventions, as stand-alone interventions and in combination with maintenance antidepressant treatment (M-ADM) or antidepressant medication (ADM) discontinuation for patients with remitted anxiety disorders or major depressive disorders (MDD). Methods A systematic review and a meta-analysis were conducted. A literature search was conducted in PubMed, PsycINFO and Embase for randomised controlled trials (RCTs) comparing psychological relapse prevention interventions to treatment as usual (TAU), with the proportion of relapse/recurrence and/or time to relapse/recurrence as outcome measure. Results Thirty-six RCTs were included. During a 24-month period, psychological interventions significantly reduced risk of relapse/recurrence for patients with remitted MDD (RR 0.76, 95% CI: 0.68–0.86, p<0.001). This effect persisted with longer follow-up periods, although these results were less robust. Also, psychological interventions combined with M-ADM significantly reduced relapse during a 24-month period (RR 0.76, 95% CI: 0.62–0.94, p = 0.010), but this effect was not significant for longer follow-up periods. No meta-analysis could be performed on relapse prevention in anxiety disorders, as only two studies focused on relapse prevention in anxiety disorders. Conclusions In patients with remitted MDD, psychological relapse prevention interventions substantially reduce risk of relapse/recurrence. It is recommended to offer these interventions to remitted MDD patients. Studies on anxiety disorders are needed.
DOCUMENT
-Chatbots are being used at an increasing rate, for instance, for simple Q&A conversations, flight reservations, online shopping and news aggregation. However, users expect to be served as effective and reliable as they were with human-based systems and are unforgiving once the system fails to understand them, engage them or show them human empathy. This problem is more prominent when the technology is used in domains such as health care, where empathy and the ability to give emotional support are most essential during interaction with the person. Empathy, however, is a unique human skill, and conversational agents such as chatbots cannot yet express empathy in nuanced ways to account for its complex nature and quality. This project focuses on designing emotionally supportive conversational agents within the mental health domain. We take a user-centered co-creation approach to focus on the mental health problems of sexual assault victims. This group is chosen specifically, because of the high rate of the sexual assault incidents and its lifetime destructive effects on the victim and the fact that although early intervention and treatment is necessary to prevent future mental health problems, these incidents largely go unreported due to the stigma attached to sexual assault. On the other hand, research shows that people feel more comfortable talking to chatbots about intimate topics since they feel no fear of judgment. We think an emotionally supportive and empathic chatbot specifically designed to encourage self-disclosure among sexual assault victims could help those who remain silent in fear of negative evaluation and empower them to process their experience better and take the necessary steps towards treatment early on.