The wrist allows the hand to combine dorsopalmar flexion and radioulnar deviation, a unique combination of functions that is made possible by a highly complex system of joints. The morphologic features of the carpal bones and of the radiocarpal and intercarpal contacts can be functionally interpreted by the mechanism that underlies the movements of the hand to the forearm. Displacements of the carpals take place in longitudinal articulation chains, with the proximal carpals having the position of an intercalated bone. The three articulation chains, radial, central, and ulnar, have interdependent movements at the radiocarpal and midcarpal levels. The linkage of movements in the longitudinal direction is associated to a transverse linkage by mutual joint contacts and by specific ligamentous interconnections. Kinematic analyses of the carpal joint motions have provided convincing evidence that each motion of the hand to the forearm demonstrates a specific motion pattern of the carpal bones. The stability of the carpus essentially depends on the integrity of the ligamentous system which consists of interwoven fiber bundles that differ in length, direction, and mechanical properties. Distinct separations into morphologic entities are difficult to make. From a functional point of view, the ligamentous interconnections can be regarded as a system that passively restricts movements of the carpals on one another and on the radius, but in a very differentiated way. The ligamentous system controls the linkage of the movements of the carpals, with the geometries of the bones and of the joint surfaces being, first of all, responsible for the kinematic behavior of the carpal joint.
DOCUMENT
Understanding taste is key for optimizing the palatability of seaweeds and other non-animal-based foods rich in protein. The lingual papillae in the mouth hold taste buds with taste receptors for the five gustatory taste qualities. Each taste bud contains three distinct cell types, of which Type II cells carry various G protein-coupled receptors that can detect sweet, bitter, or umami tastants, while type III cells detect sour, and likely salty stimuli. Upon ligand binding, receptor-linked intracellular heterotrimeric G proteins initiate a cascade of downstream events which activate the afferent nerve fibers for taste perception in the brain. The taste of amino acids depends on the hydrophobicity, size, charge, isoelectric point, chirality of the alpha carbon, and the functional groups on their side chains. The principal umami ingredient monosodium l-glutamate, broadly known as MSG, loses umami taste upon acetylation, esterification, or methylation, but is able to form flat configurations that bind well to the umami taste receptor. Ribonucleotides such as guanosine monophosphate and inosine monophosphate strongly enhance umami taste when l-glutamate is present. Ribonucleotides bind to the outer section of the venus flytrap domain of the receptor dimer and stabilize the closed conformation. Concentrations of glutamate, aspartate, arginate, and other compounds in food products may enhance saltiness and overall flavor. Umami ingredients may help to reduce the consumption of salts and fats in the general population and increase food consumption in the elderly.
MULTIFILE