In order for techniques from Model Driven Engineering to be accepted at large by the game industry, it is critical that the effectiveness and efficiency of these techniques are proven for game development. There is no lack of game design models, but there is no model that has surfaced as an industry standard. Game designers are often reluctant to work with models: they argue these models do not help them design games and actually restrict their creativity. At the same time, the flexibility that model driven engineering allows seems a good fit for the fluidity of the game design process, while clearly defined, generic models can be used to develop automated design tools that increase the development’s efficiency.
DOCUMENT
Het RAAK MKB-project Geautomatiseerd Game Design is na de oorspronkelijke projectduur van 1 maart 2013 t/m 31 mei 2015 nog met drie maanden uitgebreid om nog gebruik te kunnen maken van tot dan toe onbenutte projectresources, ten behoeve van (1) de ontwikkeling van cursus- en trainingsmateriaal, (2) evaluatie van dit cursus- en trainingsmateriaal, en (3), verfijning, verduurzaming, en disseminatie van de resultaten van het project. Dit rapport geeft een verslag van de activiteiten en resultaten van deze extensieperiode, van 1 oktober t/m 31 december 2015.Projectnummer 2012-20-43M, Subsidieperiode : 1 maart 2013–31 mei 2015 + extensie van 1 okt-31 dec 2015
DOCUMENT
Design and development practitioners such as those in game development often have difficulty comprehending and adhering to the European General Data Protection Regulation (GDPR), especially when designing in a private sensitive way. Inadequate understanding of how to apply the GDPR in the game development process can lead to one of two consequences: 1. inadvertently violating the GDPR with sizeable fines as potential penalties; or 2. avoiding the use of user data entirely. In this paper, we present our work on designing and evaluating the “GDPR Pitstop tool”, a gamified questionnaire developed to empower game developers and designers to increase legal awareness of GDPR laws in a relatable and accessible manner. The GDPR Pitstop tool was developed with a user-centered approach and in close contact with stakeholders, including practitioners from game development, legal experts and communication and design experts. Three design choices worked for this target group: 1. Careful crafting of the language of the questions; 2. a flexible structure; and 3. a playful design. By combining these three elements into the GDPR Pitstop tool, GDPR awareness within the gaming industry can be improved upon and game developers and designers can be empowered to use user data in a GDPR compliant manner. Additionally, this approach can be scaled to confront other tricky issues faced by design professionals such as privacy by design.
LINK
A level designer typically creates the levels of a game to cater for a certain set of objectives, or mission. But in procedural content generation, it is common to treat the creation of missions and the generation of levels as two separate concerns. This often leads to generic levels that allow for various missions. However, this also creates a generic impression for the player, because the potential for synergy between the objectives and the level is not utilised. Following up on the mission-space generation concept, as described by Dormans, we explore the possibilities of procedurally generating a level from a designer-made mission. We use a generative grammar to transform a mission into a level in a mixed-initiative design setting. We provide two case studies, dungeon levels for a rogue-like game, and platformer levels for a metroidvania game. The generators differ in the way they use the mission to generate the space, but are created with the same tool for content generation based on model transformations. We discuss the differences between the two generation processes and compare it with a parameterized approach.
LINK
DOCUMENT
This paper addresses the procedural generation of levels for collaborative puzzle-platform games. To address this issue, we distinguish types of multiplayer interaction, focusing on two-player collaboration, and identify relevant game mechanics for a puzzle-platform game, addressing player movement, interaction with moving game objects, and physical interaction involving both players. These are further formalized as game design patterns. To test the feasibility of the approach, a level generator has been implemented based on a rule-based approach, using the existing tool called Ludoscope and a prototype game developed in the Unity game engine. The level generation procedure results in over 3.7 million possible playable level variations that can be generated automatically. Each of these levels encourages or even requires both players to engage in collaborative gameplay.
DOCUMENT
This paper discusses the potential application of procedural content generation to a game about economical crises, intended to teach a large general audience about how banks function within a market-guided economy, and the financial risks and moral dilemmas that are involved. Procedurally generating content for abstract and complex notions such as inflation, market crashes, and market flux is different from generating spatial maps or physical assets in a game, and poses several design challenges. Instead of generating these kinds of phenomena and other macro-economic effects directly, the designers aim to let them emerge from automatically generated game mechanics. The game mechanics we propose include generic business models that can be parameterized to model the behavior of companies in the game, while the player controls the actions of a bank. What makes generating these game mechanics particularly challenging is the interaction between phenomena at different levels of abstraction. Therefore, relevant economic concepts are discussed in terms of design challenges, and how they could be modeled as emergent properties using generative methods.
DOCUMENT
This paper frames the process of designing a level in a game as a series of model transformations. The transformations correspond to the application of particular design principles, such as the use of locks and keys to transform a linear mission into a branching space. It shows that by using rewrite systems, these transformations can be formalized and automated. The resulting automated process is highly controllable: it is a perfect match for a mixed-initiative approach to level generation where human and computer collaborate in designing levels. An experimental prototype that implements these ideas is presented.
DOCUMENT
This paper introduces a creative approach aimed at empowering desk-bound occupational groups to address the issue of physical inactivity at workplaces. The approach involves a gamified toolkit called Workplace Vitality Mapping (WVM) (see Figure 1) designed to encourage self-reflection in sedentary contexts and foster the envision of physical vitality scenarios. This hybrid toolkit comprises two main components: A Card Game (on-site) for context reflection and a Co-design Canvas (Online) for co-designing vitality solutions. Through the card games, participants reflect on key sedentary contexts, contemplating their preferable physical vitality scenarios with relevant requirements. The co-design canvas facilitates the collaborative construction and discussion of vitality scenarios’ development. The perceptions and interactions of the proposed toolkit from the target group were studied and observed through a hybrid workshop, which demonstrated promising results in terms of promoting participants’ engagement experience in contextual reflections and deepening their systemic understanding to tackle the physical inactivity issue. As physical inactivity becomes an increasingly pressing concern, this approach offers a promising participatory way for gaining empathetic insights toward community-level solutions.
DOCUMENT
The paper arguments that a design approach will be essential to the future of e-democracy and e-governance. This development is driven at the intersection of three fields: democracy, information technology and design. Developments in these fields will result in a new scale, new complexity and demands for new quality of democracy solutions. Design is essential to answer these new challenges. The article identifies a new generation of design thinking as a distinct new voice in the development of e-democracy and describes some of the consequences for democracy and governance. It argues that, to be able to design new solutions for e-democracy successfully, current approaches may be too narrow and a broader critical reflection is necessary for both designers and other stakeholders in the process.
DOCUMENT