The working hypothesis for this research project is that it is possible to develop a new functional polymer printing process for the direct application of conductive polymer onto textiles. We will use the basic extrusion technology that is currently applied in 3D printing. Thus the aim is also expanding the knowledge and knowhow base of 3D printing and make this technology applicable for deposition of functional polymers on textiles in such a way that process parameters are clearly understood, and pre-defined final product specifications can be met. Thus the challenge is to apply conductive tracks with a simple one step process that fits the current textile production processes. This means that investigating polymer deposition onto textiles of bio based polymers like PLA, doped with carbon could be a versatile route to achieving economic and sustainable conducting textiles. If the mechanism underlying the bonding of doped PLA with textiles can be controlled for processing then a new route to achieving conductive grids would be opened.Paper written by the Saxion chair Smart Functional Materials and The Unversity of Twente for and accepted by the Autex Conference 2013 (22-24 May 2013, Dresden, Germany).
MULTIFILE
210,000 tons of textile waste is produced in the Netherlands every year - that is equivalent to 350,000,000 pairs of jeans. There are opportunities to use this waste stream as a resource for new materials in a circular economy, however. One such new material is the biocomposite RECURF. This material was developed within the Urban Technology research programme at Amsterdam University of Applied Sciences and consists of a combination of non-rewearable textile fibres and a bio-based plastic. The BiOrigami project sought to explore and develop architectural applications for this new circular biocomposite. Combining Japanese origami with digital production technology, BiOrigami explores possible functional, flexible applications of the biocomposite in interior products with high experiential value for use in circular-economy architecture. Origami techniques give the material important characteristics, making it more constructive and flexible with enhanced acoustic qualities. The use of digital production techniques enables serial production, which could be scaled up at a later stage.
Bio-based and circular building materials and techniques can play an important role in the transition toward a more sustainable construction sector. This study focuses on the Northern Netherlands and explores those competencies (in terms of knowledge, skills, and attitude) required by construction workers to meet thechallenges of material transition. The perspectives on this topic of construction companies, vocational education institutions, and local networking initiatives have been collected and analyzed by using the thematic analysis method. The results indicate that the limited knowledge availability, combined with the restricted experimentation possibilities, shape the current experiences, as well as the positioning of these stakeholders, regarding the desired competencies of construction workers. It is found that mainly attitudinal aspects of the construction workers need to receive particular attention and prioritization. To achieve that, the results highlight the importance of knowledge exchange and awareness-raising initiatives, as well as the development of a flexible, regional, and comprehensive learning environment.
In the context of global efforts to increase sustainability and reduce CO2 emissions in the chemical industry, bio-based materials are receiving increasing attention as renewable alternatives to petroleum-based polymers. In this regard, Visolis has developed a bio-based platform centered around the efficient conversion of plant-derived sugars to mevalonolactone (MVL) via microbial fermentation. Subsequently, MVL is thermochemically converted to bio-monomers such as isoprene and 3-methyl-1,5-pentane diol, which are ultimately used in the production of polymer materials. Currently, the Visolis process has been optimized to use high-purity, industrial dextrose (glucose) as feedstock for their fermentation process. Dutch Sustainable Development (DSD) has developed a direct processing technology in which sugar beets are used for fermentation without first having to go through sugar extraction and refinery. The main exponent of this technology is their patented Betaprocess, in which the sugar beet is essentially exposed to heat and a mild vacuum explosion, opening the cell walls and releasing the sugar content. This Betaprocess has the potential to speed up current fermentation processes and lower feedstock-related costs. The aim of this project is to combine aforementioned technologies to enable the production of mevalonolactone using sucrose, present in crude sugar beet bray after Betaprocessing. To this end, Zuyd University of Applied Sciences (Zuyd) intends to collaborate with Visolis and DSD. Zuyd will utilize its experience in both (bio)chemical engineering and fermentation to optimize the process from sugar beet (pre)treatment to product recovery. Visolis and DSD will contribute their expertise in microbial engineering and low-cost sugar production. During this collaboration, students and professionals will work together at the Chemelot Innovation and Learning Labs (CHILL) on the Brightlands campus in Geleen. This collaboration will not only stimulate innovation and sustainable chemistry, but also provides starting professionals with valuable experience in this expanding field.
Synthetic ultra-black (UB) materials, which demonstrate exceptionally high absorbance (>99%) of visible light incident on their surface, are currently used as coatings in photovoltaic cells and numerous other applications. Most commercially available UB coatings are based on an array of carbon nanotubes, which are produced at relatively high temperature and result in numerous by-products. In addition, UB nanotube coatings require harsh application conditions and are very susceptible to abrasion. As a result, these coatings are currently obtained using a manufacturing process with relatively high costs, high energy consumption and low sustainability. Interestingly, an UB coating based on a biologically derived pigment could provide a cheaper and more sustainable alternative. Specifically, GLO Biotics proposes to create UB pigment by taking a bio-mimetic approach and replicate structures found in UB deep-sea fish. A recent study[1] has actually shown that specific fish have melanosomes in their skin with particular dimensions that allow absorption of up to 99.9% of incident light. In addition to this, recent advances in bacterial engineering have demonstrated that it is possible to create bacteria-derived melanin particles with very similar dimensions to the melanosomes in aforementioned fish. During this project, the consortium partners will combine both scientific observations in an attempt to provide the proof-of-concept for developing an ultra-black coating using bacteria-derived melanin particles as bio-based, sustainable pigment. For this, Zuyd University of Applied Sciences (Zuyd) and Maastricht University (UM) collaborate with GLO Biotics in the development of the innovative ‘BLACKTERIA’ UB coating technology. The partners will attempt at engineering an E. coli expression system and adapt its growth in order to produce melanin particles of desired dimensions. In addition, UM will utilize their expertise in industrial coating research to provide input for experimental set-up and the development of a desired UB coating using the bacteria-derived melanin particles as pigment.
The valorization of biowaste, by exploiting side stream compounds as feedstock for the sustainable production of bio-based materials, is a key step towards a more circular economy. In this regard, chitin is as an abundant resource which is accessible as a waste compound of the seafood industry. From a commercial perspective, chitin is chemically converted into chitosan, which has multiple industrial applications. Although the potential of chitin has long been established, the majority of seafood waste containing chitin is still left unused. In addition, current processes which convert chitin into chitosan are sub-optimal and have a significant impact on the environment. As a result, there is a need for the development of innovative methods producing bio-based products from chitin. This project wants to contribute to these challenges by performing a feasibility study which demonstrates the microbial bioconversion of chitin to polyhydroxyalkanoates (PHAs). Specifically, the consortium will attempt to cultivate and engineer a recently discovered bacterium Chi5, so that it becomes able to directly produce PHAs from chitin present in solid shrimp shell waste. If successful, this project will provide a proof-of-concept for a versatile microbial production platform which can contribute to: i) the valorization of biowaste from the seafood industry, ii) the efficient utilization of chitin as feedstock, iii) the sustainable and (potentially low-cost) production of PHAs. The project consortium is composed of: i) Van Belzen B.V., a Dutch shrimp trading company which are highly interested in the valorization of their waste streams, hereby making their business model more profitable and sustainable. ii) AMIBM, which have recently isolated and characterized the Chi5 marine-based chitinolytic bacterium and iii) Zuyd, which will link aforementioned partners with students in creating a novel collaboration which will stimulate the development of students and the translation of academic knowledge to a feasible application technology for SME’s.