Urban nature enhancement is a theme that needs to be considered across different scales. From pocket parks and façade-greening to urban green infrastructure, biodiversity thrives best through connectivity.In the SIA-project, Nature-inclusive Area Development, four universities of applied sciences - Aeres University of Applied Sciences, Avans University of Applied Sciences, Amsterdam University of Applied Sciences, and Van Hall Larenstein University of AppliedSciences- researched three levels of area development to accelerate the transition to nature-inclusive area development. The study consisted of three case studies: Waarder Railway Zone (building), Knowledge Mile Park (KMP - street - Amsterdam), and AlmereCentre-Pampus (area).
DOCUMENT
The transition to a biobased economy necessitates utilizing renewable resources as a sustainable alternative to traditional fossil fuels. Bioconversion is a way to produce many green chemicals from renewables, e.g., biopolymers like PHAs. However, fermentation and bioconversion processes mostly rely on expensive, and highly refined pure substrates. The utilization of crude fractions from biorefineries, especially herbaceous lignocellulosic feedstocks, could significantly reduce costs. This presentation shows the microbial production of PHA from such a crude stream by a wild-type thermophilic bacterium Schlegelella thermodepolymerans [1]. Specifically, it uses crude xylose-rich fractions derived from a newly developed biorefinery process for grassy biomasses (the ALACEN process). This new stepwise mild flow-through biorefinery approach for grassy lignocellulosic biomass allows the production of various fractions: a fraction containing esterified aromatics, a monomeric xylose-rich stream, a glucose fraction, and a native-like lignin residue [2]. The crude xylose-rich fraction was free of fermentation-inhibiting compounds meaning that the bacterium S.thermodepolymerans could effectively use it for the production of one type of PHA, polyhydroxybutyrate. Almost 90% of the xylose in the refined wheat straw fraction was metabolized with simultaneous production of PHA, matching 90% of the PHA production per gram of sugars, comparable to PHA yields from commercially available xylose. In addition to xylose, S. thermodepolymerans converted oligosaccharides with a xylose backbone (xylans) into fermentable xylose, and subsequently utilized the xylose as a source for PHA production. Since the xylose-rich hydrolysates from the ALACEN process also contain some oligomeric xylose and minor hemicellulose-derived sugars, optimal valorization of the C5-fractions derived from the refinery process can be obtained using S. thermodepolymerans. This opens the way for further exploration of PHA production from C5-fractions out of a variety of herbaceous lignocellulosic biomasses using the ALACEN process combined with S. thermodepolymerans. Overall, the innovative utilization of renewable resources in fermentation technology, as shown herein, makes a solid contribution to the transition to a biobased economy.[1] W. Zhou, D.I. Colpa, H. Permentier, R.A. Offringa, L. Rohrbach, G.J.W. Euverink, J. Krooneman. Insight into polyhydroxyalkanoate (PHA) production from xylose and extracellular PHA degradation by a thermophilic Schlegelella thermodepolymerans. Resources, Conservation and Recycling 194 (2023) 107006, ISSN 0921-3449, https://doi.org/10.1016/j.resconrec.2023.107006. [2] S. Bertran-Llorens, W.Zhou. M.A.Palazzo, D.I.Colpa, G.J.W.Euverink, J.Krooneman, P.J.Deuss. ALACEN: a holistic herbaceous biomass fractionation process attaining a xylose-rich stream for direct microbial conversion to bioplastics. Submitted 2023.
LINK
The upscaling of biphasic photochemical reactions is challenging because of the inherent constraints of liquid-gas mixing and light penetration. Using semi-permeable coaxial flow chemistry within a modular photoreactor, the photooxidation of the platform chemical furfural was scaled up to produce routinely 29 gram per day of biobased building block hydroxybutenolide, a precursor to acrylate alternatives.
DOCUMENT
VHL University of Applied Sciences (VHL) is a sustainable University of AppliedSciences that trains students to be ambitious, innovative professionals andcarries out applied research to make a significant contribution to asustainable world. Together with partners from the field, they contribute to innovative and sustainable developments through research and knowledge valorisation. Their focus is on circular agriculture, water, healthy food & nutrition, soil and biodiversity – themes that are developed within research lines in the variousapplied research groups. These themes address the challenges that are part ofthe international sustainability agenda for 2030: the sustainable developmentgoals (SDGs). This booklet contains fascinating and representative examplesof projects – completed or ongoing, from home and abroad – that are linked tothe SDGs. The project results contribute not only to the SDGs but to their teaching as well.
DOCUMENT
Bio-based and circular building materials and techniques can play an important role in the transition toward a more sustainable construction sector. This study focuses on the Northern Netherlands and explores those competencies (in terms of knowledge, skills, and attitude) required by construction workers to meet thechallenges of material transition. The perspectives on this topic of construction companies, vocational education institutions, and local networking initiatives have been collected and analyzed by using the thematic analysis method. The results indicate that the limited knowledge availability, combined with the restricted experimentation possibilities, shape the current experiences, as well as the positioning of these stakeholders, regarding the desired competencies of construction workers. It is found that mainly attitudinal aspects of the construction workers need to receive particular attention and prioritization. To achieve that, the results highlight the importance of knowledge exchange and awareness-raising initiatives, as well as the development of a flexible, regional, and comprehensive learning environment.
DOCUMENT
This booklet is a short reflection on the workshop activities by the research group, Popular culture Sustainability and Innovation (PSI), of the Hanze University in Groningen for the CCC Reloaded: CREALAB project over the last one and half years. Based on a series of explorative workshops this booklet includes reflections on art, design & sustainability. A broad range of different stakeholders share their views on bio based design, the value of waste and the artist as agent of sustainable change. The urgency of the topic and the innovative opportunities it generates are highlighted by contributors like creative entrepreneurs, scientists, teachers and art students that collaborated in the past workshop series. A Sense of Green includes contributions by Han Brezet, Nathalie Beekman, Klaas Pieter Lindeman, Aart van Bezooijen, Anouk Zeeuw van der Laan, Anne Nigten and others.
DOCUMENT
Hoe bestrijden we energiearmoede die ontstaat in de private huursector? Hoe versterk je de cyberweerbaarheid van het mkb? En hoe kunnen we afgeschreven windmolens hergebruiken als nieuw bouwmateriaal? Het zijn slechts drie van de talloze voorbeelden van actueel praktijkgericht onderzoek aan hogescholen. Onderzoek dat direct is verbonden met grote maatschappelijke opgaven, bijvoorbeeld op het gebied van energie, klimaat, technologisering en kansengelijkheid. Voor die opgaven hebben we nieuwe kennis nodig die we snel kunnen omzetten in nieuwe producten en oplossingen. Het praktijkgericht onderzoek aan hogescholen is daarvoor een onmisbare schakel tussen fundamenteel onderzoek en onze samenleving.
MULTIFILE