We studied 12 smart city projects in Amsterdam, and –among other things- analysed their upscaling potential and dynamics. Here are some of our findings:First, upscaling comes in various forms: rollout, expansion and replication. In roll-out, a technology or solution that was successfully tested and developed in the pilot project is commercialised/brought to the market (market roll-out), widely applied in an organisation (organisational roll-out), or rolled out across the city (city roll-out). Possibilities for rollout largely emerge from living-lab projects (such as Climate street and WeGo), where companies can test beta versions of new products/solutions. Expansion is the second type of upscaling. Here, the smart city pilot project is expanded by a) adding partners, b) extending the geographical area covered by the solution, or c) adding functionality. This type of upscaling applies to platform projects, for example smart cards for tourists, where the value of the solution grows with the number of participating organisations. Replication is the third and most problematic type of upscaling. Here, the solution that was developed in the pilot project is replicated elsewhere (another organisation, another part of the city, or another city). Replication can be done by the original pilot partnership but also by others, and the replication can be exact or by proxy. We found that the replication potential of projects is often limited because the project’s success is highly context-sensitive. Replication can also be complex because new contexts might often require the establishment of new partnerships. Possibilities for replication exist, though, at the level of working methods, specific technologies or tools, but variations among contexts should be taken into consideration. Second, upscaling should be considered from the start of the pilot project and not solely at the end. Ask the following questions: What kind of upscaling is envisioned? What parts of the project will have potential for upscaling, and what partners do we need to scale up the project as desired? Third, the scale-up stage is quite different from the pilot stage: it requires different people, competencies, organisational setups and funding mechanisms. Thus, pilot project must be well connected to the parent organisations, else it becomes a “sandbox” that will stay a sandbox. Finally, “scaling” is not a holy grail. There is nothing wrong when pilot projects fail, as long as the lessons are lessons learned for new projects, and shared with others. Cities should do more to facilitate learning between their smart city projects, to learn and innovate faster.
Het lectoraat Innoverend ondernemen verbonden aan De Haagse Hogeschool heeft op 12 november 2015 een seminar georganiseerd over nieuwe businessmodellen en de nieuwe economie. Van deze dag hebben we een verslag gemaakt middels deze uitgave. Een interessant naslagwerk voor alle ruim 150 deelnemers van dit seminar, die kunnen teruglezen wat ze deze dag hebben geleerd, maar ook kunnen leren van de workshops waarin ze niet hebben geparticipeerd. Daarnaast is deze uitgave leerzaam voor iedereen die geïnteresseerd is in nieuwe businessmodellen vanuit verschillende perspectieven, waarin theorie en praktijk samen komen.
Rapportage groep studenten van het Smart Solution Semester, in opdracht van onderzoeker R. Nijdam van het lectoraat Regio-ontwikkeling. Het deelproject van deze studenten behelst deel 1 van een onderzoeksproject naar de ontwikkeling van een beslissingsondersteunend systeem voor ondernemers in de verblijfsrecreatieve sector om hun bedrijfsvoering zo duurzaam en circulair mogelijk te organiseren. De rapportage is gepresenteerd aan een representatieve groep vertegenwoordigers uit het werkveld (ondernemers en branchevereniging).
MULTIFILE
The Cashing Cashew project focuses on isolation and purification of Cashew Nut Shell Liquid (CNSL) from Cashew Nut Shells (CNS) in order to fully utilize this valuable by-product of the cashew nut production. Global cashew nut production is about 4 million mt/ tons/yr. Of the cashew nut, about 70 % is shell that is removed in processing and currently typically burned as a dirty and inefficient fuel or discarded as waste. This is not only creating an environmental issue but also wasting valuable by-products. The shell contains circa 20-30 % brown viscous liquid, Cashew Nut Shell Liquid (CNSL). This natural resin contains valuable chemical components, for example, cardanol, cardol, and anacardic acid. CNSL and its derivatives have several industrial uses as for example biobased additives, polymeric building blocks, and biodiesel. Part of the CNSL can be extracted during the roasting process prior to separating the shell and nut kernel. The shell waste still has a high CNSL concentration that can be isolated by solvents or pressing (expeller). Expeller process is simple and not capital-intensive; therefore it is commonly used. The main disadvantages of the method are the high energy consumption and that 3-5 % oil remains in the press-cake producing harmful gases in burning. Also, the resulting cake is too dense to be further processed to charcoal or other useful application. The objective of this project is to study the purification of the CNSL obtained from pyrolytic isolation to find the most efficient way of making use of the CNSL oil and the total Cashew Nut Shell biomass. An initial evaluation of potential applications is also performed.
Om de klimaat- en circulaire doelstellingen te halen moet de kunststof/plasticsector in de komende decennia sterk verduurzamen . Voor de producenten van polyesters liggen hier veel mogelijkheden. In tegenstelling tot bijvoorbeeld polyolefines kunnen veel polyesters goed chemisch naar de monomere bouwstenen worden gerecycled. Verder is al een aantal monomeren (isosorbide, 1,3-propaandiol, succinaat, FDCA, etc.) op de markt die afkomstig zijn uit hernieuwbare grondstoffen en gebruikt kunnen worden in de synthese. Toch bestaat er vanuit de industrie een sterke behoefte aan nieuwe biobased monomeren die niet alleen de abiotische/petrochemische monomeren kunnen vervangen maar ook nieuwe eigenschappen, inclusief biodegradeerbaarheid, brandwerendheid, aan polyesters kunnen toevoegen. In dit project wordt beoogd om de in literatuur beschreven verbinding furan 2,5-dipropionic acid (methylester) te synthetiseren, dit vervolgens te optimaliseren en op te schalen naar grotere hoeveelheden (20-100 g). Het furan 2,5-dipropionic acid (FDPA) kan via een drie-staps synthese worden verkregen uit de biobased building blocks furfural en levulinezuur Beide verbindingen worden op commerciële schaal gesynthetiseerd uit verschillende biogrondstoffen maar zijn ook, zoals recent aangetoond door de Hanzehogeschool in een lopend GoChem project, te synthetiseren uit hooi. De verbinding zal vervolgens als co-monomeer in een aantal verschillende polycondensaties worden ingebouwd en op een aantal parameters (ratio, Tg, Tm, Mwt,) worden geanalyseerd om inzicht te krijgen in de structuureigenschappen en het commercieel perspectief van dit nieuwe type co-polymeren.
Introduction The research group Biobased Resources & Energy (BRE) of Avans focusses on recovery of valuable building blocks from low-value solid and liquid residual streams from agriculture, households and industries. For the valorisation of these residual streams, BRE looks into different biological, chemical and mechanical processes. One of the main issues in the utilisation of residual streams is economic feasibility and the recovery of multiple resources from one residual stream. Using membrane technologies in combination with biological, chemical and/or mechanical processes could offer great opportunities. Central Research Question What is the applicability of membrane technologies for valorisation of different residual streams and is it possible to integrate membrane technology in current and new biorefining projects of research group BRE: Set-up In order to reach the goal of this postdoc, 4 research questions will be answered using literature search, experimentation and modelling: 1) What membrane methods are currently (commercially) available to enhance the results of current projects in research group BRE? 2) What are the essential technical parameters for membrane separation and how can these be optimized? 3) What is the economic impact of using membrane technology in recovery of valuable building blocks from residual streams? 4) What are the effects of using membranes instead of or complementary to currently used methods on the sustainability of valorisation of residual streams? Cooperation The postdoc and the research group BRE want to extend the contact and research cooperation with (regional) businesses and (applied) universities and support and facilitate the introduction and further development of membrane technologies in the curriculum of different Avans study programmes. This will be done via internships, minor projects (together with businesses) and development of study material for courses and trainings.