In het dagelijks leven hebben we voortdurend met verschillende plastics te maken. Overal om ons heen komen we plastics tegen. Denk bijvoorbeeld aan verpakkingsmaterialen, flessen, flacons, kratten, tapijten en plastic draagtassen. Een leven zonder kunststoffen is in onze huidige maatschappij vrijwel ondenkbaar geworden. In 2014 werd er volgens Plastics Europe [1] wereldwijd maar liefst 311.000.000 ton aan kunststoffen geproduceerd, in 1950 was dit nog slechts 1.700.000 ton. Vanaf 1950 stijgt de wereldwijde productie van kunststoffen met gemiddeld 9% per jaar. Bij de huidige productiecapaciteit komt dit volgens Plastics Europe neer op gemiddeld 40 kg/jaar per hoofd van de wereldbevolking! Naar verwachting zal het gebruik van plastics verder toenemen naar gemiddeld 87 kg/jaar per hoofd van de wereldbevolking in het jaar 2050. In Nederland ligt het verbruik momenteel op gemiddeld 126 kg per inwoner. Maar volgens prognoses van VLEEM (Very Long Term Energy Environment Model) [2] zal dit groeien naar gemiddeld 220 kg per inwoner in 2050!! De toenemende vraag naar plastics wordt mede veroorzaakt omdat plastics op zich een gemakkelijk te verwerken materiaal is. Plastics zijn relatief goedkoop, hebben een lage specifieke dichtheid (t.o.v. bijvoorbeeld metalen), en zijn snel en gemakkelijk verwerkbaar.
Positioning paper bij de inauguratie van Vincent Voet als lector Circular Plastics.
Plastic is one of the biggest contributors to pollution of the planet. Due to the low recyclability of oil-based plastics, most plastic is being disposed into the environment. According to plastic oceans, 10 million tons of plastic are dumped into oceans annually. Currently, researchers are developing recycling methods for oil-based plastics and are looking for biobased alternatives. One of these alternatives are a class of polymers called polyhydroxyalkanoates (PHA’s). PHA’s differ from other biobased polymers, due to the process of fabrication. PHA’s are a natural polymer, acting as an energy and carbon storage for different strains of bacteria. Functioning as an energy storage, nature can break down PHA’s and PHA-based waste. (1) Different companies are working on PHA’s production, but a large deviations in physical properties were observed. This research aims to establish a relationship between the chemical and physical properties of the different PHA’s, using gel permeability chromatography (GPC), nuclear magnetic resonance (NMR) and gas chromatography-mass spectroscopy (GC-MS).
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
Broedeieren worden door heel Europa standaard op kartonnen trays, gemaakt van papierpulp, vervoerd. Het aanbod van papierpulp neemt af, wat een verhoging van de prijs van papierpulp als grondstof tot gevolg heeft. Dit is echter niet de enige reden om de trays te innoveren en in te passen in een circulaire economisch profiel. Standaard trays zijn namelijk niet sterk genoeg, ze buigen door bij het verplaatsen en dat kan leiden tot schade aan de broedeieren. Dit heeft tot gevolg dat: 1) er minder eieren per tray worden vervoerd dan gewenst, 2) dat ventilatie van de lucht niet optimaal is, wat de gezondheid van de kuikens ‘to-be’ negatief beïnvloedt en, 3) ongeveer 10% van de broedeieren verloren gaat en er dus financiële schade is. Er is daarom behoefte aan een alternatief. Het versterken van de structuur en de ventilatieverbetering van de eiertrays stelt eisen aan de vervanger van de papierpulp. Het moet sterker zijn dan papierpulp en de vormgeving van de eiertrays moet dusdanig zijn dat voldoende ventilatie plaatsvindt. Bamboevezels met een biobased verbindingsmiddel zou hieraan kunnen voldoen. Concreet doel: De selectie van een betaalbaar bio-based en bio-afbreekbaar(circulair) bindmiddel voor bamboevezels en het maken van prototypen eiertrays voor broedeieren. Het doel van dit project is te onderzoeken welke combinatie van (bamboe) vezels en een biobased verbindingsmiddel (binders) een sterke en zeer lichte structuur oplevert. Het moet de potentie hebben om in bulk geproduceerd te worden, dat wil zeggen miljoenen trays per jaar binnen de EU. Het liefst wordt er gebruik gemaakt van bindmiddel uit afvalstromen. Uiteindelijk doel is de ontwikkeling van een nieuwe eiertray die sterk genoeg is om alle eieren te dragen, beter ventileert en (nice-to-have) eetbaar is voor de kuikentjes die uitkomen. Partners in het project: Bambooder, afdeling Biologie faculteit beta-wetenschappen Universiteit Utrecht Instituut Natuur & Techniek en Instituut Life Sciences & Chemistry, Hogeschool Utrecht.
Aiming for a more sustainable future, biobased materials with improved performance are required. For biobased vinyl polymers, enhancing performance can be achieved by nanostructuring the material, i.e. through the use of well-defined (multi-)block, gradient, graft, comb, etc., copolymer made by controlled radical polymerization (CRP). Dispoltec has developed a new generation of alkoxyamines, which suppress termination and display enhanced end group stability compared to state-of-art CRP. Hence, these alkoxyamines are particularly suited to provide access to such biobased nanostructured materials. In order to produce alkoxyamines in a more environmentally benign and efficient manner, a photo-chemical step is beneficial for the final stage in their synthesis. Photo-flow chemistry as a process intensification technology is proposed, as flow chemistry inherently leads to more efficient reactions. In particular, photo-flow offers the benefit of significantly enhancing reactant concentrations and reducing batch times due to highly improved illumination. The aim of this project is to demonstrate at lab scale the feasibility of producing the new generation of alkoxy-amines via a photo-flow process under industrially relevant conditions regarding concentration, duration and efficiency. To this end, Zuyd University of Applied Sciences (Zuyd), CHemelot Innovation and Learning Labs (CHILL) and Dispoltec BV want to enter into a collaboration by combining the expertise of Dispoltec on alkoxyamines for CRP with those of Zuyd and CHILL on microreactor technology and flow chemistry. Improved access to these alkoxyamines is industrially relevant for initiator manufacturers, as well as producers of biobased vinyl polymers and end-users aiming to enhance performance through nanostructuring biobased materials. In addition, access in this manner is a clear demonstration for the high industrial potential of photo-flow chemistry as sustainable manufacturing tool. Further to that, students and professionals working together at CHILL will be trained in this emerging, industrially relevant and sustainable processing tool.