Heeft plastic op basis van aardolie zijn langste tijd gehad? Steeds meer bedrijven in binnen- en buitenland gaan over op het gebruik van kunststoffen die worden geproduceerd uit natuurlijke hernieuwbare grondstoffen, zoals maïs, aardappels en suikerbieten. Deze zogenaamde biopolymeren zijn niet nieuw, maar wel zeer actueel. Het Kenniscentrum Design en Technologie van Saxion heeft,als onderdeel van het innovatieprogramma Materialen in Ontwerp, een praktijkgericht onderzoek uitgevoerd naar het gebruik van biopolymeren. Hierin is samengewerkt met de Verenigde Maakindustrie Oost, Industrial Design Centre, ontwerpbureau D 'Andrea en Evers en Syntens. Het innovatieprogramma staat onder leiding van de Saxion-lectoren Karin van Beurden, lector Product Design, en Ger Brinks, lector Smart Functional Materials en is gericht op het creëren van praktisch toepasbare kennis in door bedrijven aangedragen vragen en onderwerpen. Daartoe organiseert Saxion specifieke workshops en projecten, waarbij het experts, deskundigen en studenten inzet. Het innovatieprogramma wordt mogelijk gemaakt door gelden van RAAK SIA Regionale Aandacht en Actie voor Kenniscirculatie).
MULTIFILE
“Duurzaamheid”, het is één van de termen die tegenwoordig niet meer weg te denken zijn uit het nieuws, de reclames en vele netwerkbijeenkomsten. Duurzaam ondernemen, duurzaam wonen, duurzame energievoorziening, duurzame producten, gaat er een dag aan ons voorbij dat we niet worden herinnerd aan het belang van een duurzame levensstijl om er voor te zorgen dat deze wereld ook voor onze kinderen en achterkleinkinderen nog een fijne natuurlijke wereld mag zijn om in te leven? Op het gebied van duurzame materialen kregen zo biopolymeren en gerecyclede kunststoffen de aandacht. In dit boekje worden biopolymeren belicht. Daarbij wordt vooral ook aandacht besteed aan de discussie of biopolymeren nou wel echt zo milieuvriendelijk en duurzaam zijn als dat ze lijken. Dit boekje is opgesteld om ontwerpers en bedrijven die zich bezig houden met productontwikkeling praktische (eerste) informatie te bieden over biopolymeren. Naast definities, voor- en nadelen, technieken, toepassingsgebieden, soorten, eigenschappen en regelgeving zal ook een roadmap gegeven worden die inzicht geeft in welke biopolymeren er al zijn en welke er nog verwacht kunnen worden.
MULTIFILE
In het dagelijks leven hebben we voortdurend met verschillende plastics te maken. Overal om ons heen komen we plastics tegen. Denk bijvoorbeeld aan verpakkingsmaterialen, flessen, flacons, kratten, tapijten en plastic draagtassen. Een leven zonder kunststoffen is in onze huidige maatschappij vrijwel ondenkbaar geworden. In 2014 werd er volgens Plastics Europe [1] wereldwijd maar liefst 311.000.000 ton aan kunststoffen geproduceerd, in 1950 was dit nog slechts 1.700.000 ton. Vanaf 1950 stijgt de wereldwijde productie van kunststoffen met gemiddeld 9% per jaar. Bij de huidige productiecapaciteit komt dit volgens Plastics Europe neer op gemiddeld 40 kg/jaar per hoofd van de wereldbevolking! Naar verwachting zal het gebruik van plastics verder toenemen naar gemiddeld 87 kg/jaar per hoofd van de wereldbevolking in het jaar 2050. In Nederland ligt het verbruik momenteel op gemiddeld 126 kg per inwoner. Maar volgens prognoses van VLEEM (Very Long Term Energy Environment Model) [2] zal dit groeien naar gemiddeld 220 kg per inwoner in 2050!! De toenemende vraag naar plastics wordt mede veroorzaakt omdat plastics op zich een gemakkelijk te verwerken materiaal is. Plastics zijn relatief goedkoop, hebben een lage specifieke dichtheid (t.o.v. bijvoorbeeld metalen), en zijn snel en gemakkelijk verwerkbaar.
DOCUMENT
De overgang van traditionele textiel naar biotextiel kan omschreven worden als een paradigmaverandering, in grote lijnen parallel aan de komst van biotechnologie. Dit wordt vaak geassocieerd met begrippen als creatieve destructie, waarbij nieuwe innovatieve industrieën de bestaande achterhaald doen raken. Maar biopolymeren zijn er altijd al geweest. Wat opvalt, is hier niet het radicale van de verandering, maar de mogelijkheid om nieuwe technologieën en materialen toe te passen en te reageren op vragen van de markt en mondiale omstandigheden. In dit rapport wordt een overzicht gegeven van het gebruik van de meest voorkomende biopolymeren in geotextieltoepassingen, dus toepassingen in bijvoorbeeld de weg- en waterbouw of in de agro-industrie. Biopolymeren worden als volgt gedefinieerd: ‘polymeren die worden geproduceerd uit natuurlijke hernieuwbare grondstoffen’. Dit zijn bijvoorbeeld: • Duurzame beschikbare (delen van) planten en dieren (ook aquatische biomassa). • Primaire residuen (bermgras, houtafval, ...). • Secundaire residuen (bietenpulp, bierborstel, ...). • Tertiaire residuen (dierlijk vet, GFT, ...). Biobased houdt in dat een polymeer uit natuurlijke, dierlijke of hernieuwbare grondstof bestaat. Dit geeft een grotere onafhankelijkheid van de klassieke grondstofproducenten, zoals de aardolie- en gasproducenten. Echter moet bedacht worden dat er weer een afhankelijkheid van andere grondstofproducenten kan ontstaan. Natuurlijke grondstoffen zijn de meest bekende. Er is bijvoorbeeld cellulose uit katoen, vlas van de vlasplant of brandnetelvezel van de brandnetel. Onder dierlijke grondstoffen verstaan we onder andere chitosan uit schaaldieren. Een hernieuwbare grondstof is bijvoorbeeld zetmeel/suiker voor PLA (polymelkzuur. Deze biopolymeren worden besproken om duidelijk te maken welke soorten wel of niet geschikt zijn voor verschillende toepassingen in geotextiel. Een verder onderscheid wordt wel gemaakt op basis hun ‘end of life’: biodegradeerbaar en composteerbaar. Een materiaal is biodegradeerbaar wanneer de afbraak het gevolg is van de actie van micro-organismen (zwammen, bacteriën), waardoor het materiaal uiteindelijk wordt omgezet in water, biomassa, CO2 en/of methaan, ongeacht de tijd die hiervoor nodig is. Composteerbaar wil zeggen dat stoffen worden afgebroken bij het composteren met een snelheid die vergelijkbaar is met die van andere bekende composteerbare materialen (bijvoorbeeld groenafval). Met andere woorden: een materiaal is composteerbaar wanneer het afbraakproces compatibel is met de omgevingsomstandigheden van een huishoudelijke of industriële composteerinstallatie, zoals temperatuur, vochtigheid en tijd. Hierbij dient te worden opgemerkt dat composteerbare materialen biodegradeerbaar zijn, maar niet alle biodegradeerbare materialen zijn composteerbaar. In de geotextiel bestaan twee grote verschillen in toepassingen. De permanente of houdbare toepassingen en de degradeerbare toepassingen. Oeverbescherming is een goed voorbeeld van een degradeerbaar product. Een nieuwe oever bestaat voor een groot deel uit los zand. Om ervoor te zorgen dat de oever door bijvoorbeeld erosie niet verdwijnt, worden er kokosmatten gebruikt voor versteviging. Op deze kokosmatten vormt zich op den duur een nieuw ecosysteem. De kokosmatten zullen dan na een aantal jaren composteren zonder vervuilende grondstoffen in de aarde achter te laten. Maar in bijvoorbeeld wegen of bij viaducten, wordt versteviging toegepast met als doel langdurig functiebehoud van het polymeer. In dit rapport is een tabel opgenomen met daarin de behandelde biopolymeren met de belangrijkste eigenschappen. Zo kan bijvoorbeeld een geotextiel producent de meest optimale keuze maken voor de grondstoffen voor haar producten. Ook is een figuur opgenomen, waarin een verzameling aan geotoepassingen en biopolymeren (met degradeerbaar/biobased labels) in een overzicht is gezet. Biopolymeren kunnen,
MULTIFILE
Bio-based and circular building materials and techniques can play an important role in the transition toward a more sustainable construction sector. This study focuses on the Northern Netherlands and explores those competencies (in terms of knowledge, skills, and attitude) required by construction workers to meet thechallenges of material transition. The perspectives on this topic of construction companies, vocational education institutions, and local networking initiatives have been collected and analyzed by using the thematic analysis method. The results indicate that the limited knowledge availability, combined with the restricted experimentation possibilities, shape the current experiences, as well as the positioning of these stakeholders, regarding the desired competencies of construction workers. It is found that mainly attitudinal aspects of the construction workers need to receive particular attention and prioritization. To achieve that, the results highlight the importance of knowledge exchange and awareness-raising initiatives, as well as the development of a flexible, regional, and comprehensive learning environment.
DOCUMENT
3D-printen op basis van polymeren kent de laatste jaren een exponentiële groei voor verschillende toepassingen. Ongeveer de helft van de polymere materialen die gebruikt worden zijn vernettende fotopolymeren (thermoharders) die gemaakt zijn uit fossiele grondstoffen en per definitie niet recycleerbaar, repareerbaar of herverwerkbaar zijn. Gezien de groei van de 3D-printmarkt in combinatie met maatschappelijke zorgen rondom kunststofafval is er vanuit het werkveld een toenemende vraag naar duurzame, circulaire 3D-printmaterialen.In dit project, dat voortborduurt op KIEM GoChem “GOCH.KIEM.KGC02.022” zal gewerkt worden aan de verduurzaming van thermohardende polymeren voor 3D-printen. Verschillende aspecten van duurzaamheid komen aan bod over de gehele waardeketen:- Biomassa als grondstof: b.v. lignine of vetzuur-gebaseerde grondstoffen (Croda). - Duurzame, veilige en opschaalbare flowchemie processen voor de synthese van de biogebaseerde bouwstenen (ZUYD, CHILL, Chemtrix).- Ontwerp van thermohardende fotopolymeren met dynamische bindingen (vitrimeren), b.v. polymethacrylaten met imine bindingen (UM, RUG). Dynamische bindingen in vitrimeren kunnen onder invloed van een stimulus zoals temperatuur, licht of pH aanleiding geven tot een materiaal dat verwerkbaar is zoals een thermoplast, wat de weg opent naar recyclage, reparatie of herverwerking van thermoharders. - Circulariteit van de materialen in 3D-printprocessen: initieel zullen de ontwikkelde bouwstenen gebruikt worden voor het 3D-printen van prototypes, gekenmerkt door een korte levensduur, via stereolithografie (NHL Stenden, Liqcreate, Binder3D). Deze protototypes zullen daarna gerecycleerd worden tot monofilamenten voor extrusie-gebaseerd 3D-printen (FDM), hetgeen mogelijk is dankzij de ingebouwde dynamische bindingen in de thermoharders (NHL Stenden, Ultimaker, Binder3D). Vervolgens zullen m.b.v. FDM diverse demonstrators worden geprint: b.v. medische protheses en controlemallen voor automotives.De gefabriceerde demonstrators zullen aantonen dat met één-en-hetzelfde materiaal verschillende 3D-printprocessen succesvol kunnen worden doorlopen. De in dit project ontwikkelde materialen bieden daarmee voor het werkveld een praktische oplossing voor de duurzaamheidsuitdagingen die gepaard gaan met de snelle marktgroei van 3D-geprinte materialen.