The pace of introduction of new technology and thus continuous change in skill needs at workplaces, especially for the engineers, has increased. While digitization induced changes in manufacturing, construction and supply chain sectors may not be felt the same in every sector, this will be hard to escape. Both young and experienced engineers will experience the change, and the need to continuously assess and close the skills gap will arise. How will we, the continuing engineering educators and administrators will respond to it? Prepared for engineering educators and administrators, this workshop will shed light on the future of continuing engineering education as we go through exponentially shortened time frames of technological revolution and in very recent time, in an unprecedented COVID-19 pandemic. S. Chakrabarti, P. Caratozzolo, E. Sjoer and B. Norgaard.
DOCUMENT
Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers (polyesters), produced by a wide range of bacterial strains. They are gaining increasing interest in different research fields, due to their sustainability and environmental-friendly properties. Additionally, PHAs are also biocompatible, which makes them interesting for tissue engineering and regenerative medicine. At the same time, they are characterized by properties ideal for 3D printing processing, such as high tensile strength, easy processability and thermoplasticity. To date, the techniques employed in PHAs printing mostly include fused deposition modeling (FDM), selective laser sintering (SLS), electrospinning (ES), and melt electrospinning (MES). In this review, we provide a comprehensive summary of the versatile and sustainably sourced bacterial PHAs, also modified by blending with natural and synthetic polymers (e.g., PLA, PGA) or combining them with inorganic fillers (e.g., nanoparticles, glass), used for 3D printing in biomedical applications. We specify focus on the printing conditions and the properties of the obtained scaffolds with a focus on the print resolution and scaffolds mechanical and biological properties. New perspectives in the emerging field of PHAs biofabrication process, characterized by sustainability and efficiency of the scaffold production, are demonstrated. The use of alternative printing techniques, i.e. melt electrowriting (MEW), and producing smart and functional materials degrading on demand under in vitro and in vivo conditions is proposed.
LINK
This article explores the decision-making processes in the ongoing development of an AI-supported youth mental health app. Document analysis reveals decisions taken during the grant proposal and funding phase and reflects upon reasons why AI is incorporated in innovative youth mental health care. An innovative multilogue among the transdisciplinary team of researchers, covering AI-experts, biomedical engineers, ethicists, social scientists, psychiatrists and young experts by experience points out which decisions are taken how. This covers i) the role of a biomedical and exposomic understanding of psychiatry as compared to a phenomenological and experiential perspective, ii) the impact and limits of AI-co-creation by young experts by experience and mental health experts, and iii) the different perspectives regarding the impact of AI on autonomy, empowerment and human relationships. The multilogue does not merely highlight different steps taken during human decision-making in AI-development, it also raises awareness about the many complexities, and sometimes contradictions, when engaging in transdisciplinary work, and it points towards ethical challenges of digitalized youth mental health care.
LINK
One of the tasks for higher education is to prepare students for their role in a changing world and to stimulate them to develop broader competencies than only in their own discipline. There are many initiatives in which existing curricula are redesigned to prepare students for this changing world. These new curricula oftentimes contain hybrid learning configurations, in which theory and (authentic) practice are intertwined, such as in project-led education, innovation labs, or workplace learning. But what are -according to students- key ingredients of future-proof education? Within Saxion University of Applied Sciences in the Netherlands, an explorative, qualitative study was conducted amongst 74 bachelor students from >20 programs, including technology and engineering programs, such as mechatronics, industrial design, or biomedical engineering. Focus group interviews were held with 24 groups, of different group sizes from 2-7 students. Interviews started with the question: What are -according to you- key ingredients of future-proof education? The interviewers directly during the interview coded the reported ingredients deductively, following a prespecified scheme based on literature. New themes were added inductively, when necessary. Next, interviewers prompted on the first answers, asking for clarification or examples. The report follows the outline of the adapted coding scheme. Distinction was made between 1st/2nd year students versus 3th/4th year students since the latter provided more in-depth and experience-based information. According to students, main ingredients of future-proof education are: authentic projects (mentioned in 22 out of 24 groups), blended/online learning (16), self-directed learning (15), teacher as coach (15), active learning (13) and collaborative learning (11). Results were used as input for the formulation of a new educational vision and Education Model, specifying ingredients for our future education.
MULTIFILE
In 2004 is aan de Fontys Hogescholen de nieuwe opleiding Applied Science gestart en in juli 2008 hebben we de eerste afgestudeerden kunnen feliciteren. Applied Science is een competentiegestuurde, breed natuurwetenschappelijke opleiding die zich richt op het microbiologische, chemische en chemisch technologische werkveld. Na een brede instroom kan een student door de vele keuzemogelijkheden zich specialiseren in een van de zeven beroepsdomeinen. Een belangrijk ontwerpprincipe is de verwevenheid van het werkveld in de opleiding. De eerste afgestudeerden hebben zeer succesvol de opleiding afgerond. In het vervolg van dit tijdschrift worden samenvattingen van een aantal afstudeeropdrachten gepresenteerd.
DOCUMENT
Research work on robots in the context of neurodevelopmental disorders and psychology has traditionally been developed by researchers with a background primarily in engineering and computer science. As psychology is getting ready to play a more prominent role, there is a chance to apply specific psychological theory and methods. Such application may be facilitated by the establishment of a relevant scientific infrastructure, such as through a specialist journal on robopsychology.
MULTIFILE
Through a qualitative examination, the moral evaluations of Dutch care professionals regarding healthcare robots for eldercare in terms of biomedical ethical principles and non-utility are researched. Results showed that care professionals primarily focused on maleficence (potential harm done by the robot), deriving from diminishing human contact. Worries about potential maleficence were more pronounced from intermediate compared to higher educated professionals. However, both groups deemed companion robots more beneficiary than devices that monitor and assist, which were deemed potentially harmful physically and psychologically. The perceived utility was not related to the professionals' moral stances, countering prevailing views. Increasing patient's autonomy by applying robot care was not part of the discussion and justice as a moral evaluation was rarely mentioned. Awareness of the care professionals' point of view is important for policymakers, educational institutes, and for developers of healthcare robots to tailor designs to the wants of older adults along with the needs of the much-undervalued eldercare professionals.
DOCUMENT
In het SaxShirt-project wordt een comfortabel shirt ontwikkeld waarmee fysiologische aspecten van de drager kunnen worden gemeten, zonder dat de drager daar extra inspanning voor hoeft te leveren. Dergelijke technologieën noemen we Zero Effort Technologies (Baecker, 2011). De belangrijkste fysiologische aspecten die in eerste instantie gemeten gaan worden zijn: 1) temperatuur 2) hartslag 3) ademhaling. Het project is gestart in september 2013. Het doel is om in oktober 2014 een praktisch demonstratiemodel te hebben van het shirt waarmee de mogelijkheden van de huidige technologie kunnen worden gedemonstreerd. Het is belangrijk dat het shirt niet alleen comfortabel zit, maar ook robuust en eenvoudig te wassen en reinigen is. Voorafgaand aan dit project zijn er al verscheidene onderzoeken en ontwikkelingen geweest om mogelijkheden voor het shirt te onderzoeken. Om een definitief implementatieplan te kunnen opstellen voor het huidige project, was er behoefte om nog eenmaal een korte verbredende onderzoeksfase uit te voeren. Dit rapport is het resultaat van deze fase. Na de verbredende fase zijn in november 2013 besluiten genomen en is begonnen aan de implementatie van het demonstratiemodel. De belangrijke momenten staan in onderstaand overzicht: • Oktober 2013: Start SaxShirt Project • November 2013: Vaststellen Plan van Aanpak (PvA) voor implementatie • Juli 2014: Afronden implementatie • Oktober 2014: Oplevering eerste demonstratiemodel SaxShirt Dit rapport beschrijft de state-of-the art van technieken waarmee bovenstaande fysiologische aspecten kunnen worden gemeten. Het doel van dit rapport is om een overzicht van in textiel-integreerbare fysiologische sensoren te geven. Dit overzicht dient als basis en discussiestuk voor het pan van aanpak voor de implementatie en kan worden gebruikt als introductie voor nieuwe medewerkers op het SaxShirt project.
MULTIFILE
Adverse Outcome Pathways (AOPs) are conceptual frameworks that tie an initial perturbation (molecular initiat- ing event) to a phenotypic toxicological manifestation (adverse outcome), through a series of steps (key events). They provide therefore a standardized way to map and organize toxicological mechanistic information. As such, AOPs inform on key events underlying toxicity, thus supporting the development of New Approach Methodologies (NAMs), which aim to reduce the use of animal testing for toxicology purposes. However, the establishment of a novel AOP relies on the gathering of multiple streams of evidence and infor- mation, from available literature to knowledge databases. Often, this information is in the form of free text, also called unstructured text, which is not immediately digestible by a computer. This information is thus both tedious and increasingly time-consuming to process manually with the growing volume of data available. The advance- ment of machine learning provides alternative solutions to this challenge. To extract and organize information from relevant sources, it seems valuable to employ deep learning Natural Language Processing techniques. We review here some of the recent progress in the NLP field, and show how these techniques have already demonstrated value in the biomedical and toxicology areas. We also propose an approach to efficiently and reliably extract and combine relevant toxicological information from text. This data can be used to map underlying mechanisms that lead to toxicological effects and start building quantitative models, in particular AOPs, ultimately allowing animal-free human-based hazard and risk assessment.
DOCUMENT