The future of age-friendly cities and communities (AFCC) needs to adapt and be more agile to the changing needs of residents of all ages. The UN Decade of Healthy Ageing ‘the Decade' provides a unique opportunity to further strengthen age-friendly environments. The Decade brings together governments, civil society, international agencies, professionals, academics, the media and the private sector for 10 years of concerted action to improve the lives of older people, their families and the communities in which they live. This editorial serves as a thought piece and outlines recommendations for the imminent and future discourse surrounding digital transformation, digital skills/literacy and financial implications on societal citizens in the AFCC discourse. Action is needed now, and this can only be achieved by talking openly about the real issues and concerns affecting people in our communities and in the future.
MULTIFILE
To date, most empirical studies have applied cross-sectional designs to investigate the relationship between the built environment (BE) and travel behaviour (TB). Since these studies cannot identify causal influence, the use of designs that provide data on multiple moments in time seems necessary. This article classifies these designs and describes how they can be applied to identify causality in this relationship. We recommend the use of natural experiments to assess the impact of changes in land use/infrastructure and prospective longitudinal designs to assess the impact of residential or job moves. In addition, the role of the BE can be explored by assessing the impact of (1) deliberate TB change experiments and (2) changes in household circumstances across different spatial contexts over time. The use of randomised experimental designs is recommended for the former and prospective longitudinal designs for the latter. The article concludes with an outlook on future research.
LINK
The development of ‘age-friendly cities’ has become a major area of work in the field of ageing and the built environment. This movement is driven by the observation that cities are home to an ever-increasing ageing population. Over the past decade, a multitude of age-friendly initiatives have been developed with the aim of making physical and social environments more favourable for older people's well-being, health and ability to live in the community. This article explores ten key questions associated with the age-friendly cities and communities' movement, with a particular focus on the built environment. It provides an overview of the history of the age-friendly cities' movement and the underlying models, the aspects of the built environment that are relevant for age-friendly cities, the ways age-friendliness can be evaluated, and the interactions between age-friendly cities initiatives and other strategic agendas such as smart cities. The paper concludes by discussing future perspectives and possible directions for further development of the age-friendly movement. © 2021 The Authors. Published by Elsevier Ltd. https://doi.org/10.1016/j.buildenv.2021.107922 LinkedIn: https://www.linkedin.com/in/jvhoof1980/
MULTIFILE
Verschillende maatschappelijke veranderingen dwingen de bouwbranche tot innovaties. Ondanks de potentie op het vlak van circulariteit en duurzaamheid van 3D-printen met kunststoffen kent deze technologie nog nauwelijks toepassingen in de bouw. Redenen hiervoor zijn achterblijvende materiaaleigenschappen en het verschil in cultuur tussen de bouwwereld en kunststofverwerkende industrie. Het bedrijf Phidias, richt zich op innovatieve en creatieve vastgoedconcepten. Samen met Zuyd Hogeschool (Zuyd) willen zij onderzoek doen naar het printen van bouwelementen waarbij de meerwaarde van 3D-printen wordt gezien in het combineren van materiaaleigenschappen. Zuyd heeft afgelopen jaren veel onderzoek gedaan naar het ontwikkelen van materialen voor 3D-printen (o.a. 2014-01-96 PRO). De volgende fase is de opgedane kennis toe te passen voor specifieke applicaties, in dit geval om de vraag van het MKB bedrijf Phidias te beantwoorden. Vanuit een ander MKB-bedrijf, MaukCC, ontwikkelaar van 3D printers, komt de vraag om de afstemming tussen materialen en hardware te optimaliseren. De combinatie van beide vragen uit het werkveld en de expertise bij Zuyd heeft geleid tot dit projectvoorstel. In deze pilotstudie ligt de focus voornamelijk op het 3D printen van één specifiek bouwkundig element met meerdere eigenschappen (bouwfysisch en constructief). De combinatie van eigenschappen wordt verkregen door gebruik te maken van twee (biobased) kunststoffen waarbij tevens een variatie wordt aangebracht in de geprinte structuren. Op deze manier kunnen grondstoffen worden gespaard. Het onderzoek sluit aan bij twee zwaartepunten van Zuyd, namelijk “Transitie naar een duurzaam gebouwde omgeving” en “Life science & materials”. De interdisciplinaire aanpak, op het grensvlak van de lectoraten “Material Sciences” (Gino van Strydonck) en “Sustainable Energy in the Built Environment” (Zeger Vroon) staat garant voor innovatief onderzoek. Integratie van onderwijs en onderzoek vindt plaats door studenten samen met een coach (docent) en ervaren professional aan dit onderzoek te laten werken in Communities for Development (CfD’s).
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.