The coronavirus pandemic highlighted the vital role urban areas play in supporting citizens’ health and well-being (Ribeiro et al., 2021). In times of (personal) vulnerability, citizens depend on their neighbourhood for performing daily physical activities to restore their mental state, but public spaces currently fall short in fulfilling the appropriate requirements to achieve this. The situation is exacerbated by Western ambitions to densify through high-rise developments to meet the housing demand. In this process of urban densification, public spaces are the carriers where global trends, local ambitions and the conditions for the social fabric materialise (Battisto & Wilhelm, 2020). High-rise developments in particular will determine users’ experiences at street-level. Consequently, they have an enduring influence on the liveability of neighbourhoods for the coming decades but, regarding the application of urban design principles, their impact is hard to dissect (Gifford, 2007).Promising emerging technologies and methods from the new transdisciplinary field of neuroarchitecture may help identify and monitor the impact of certain physical characteristics on human well-being in an evidence-based way. In the two-year Sensing Streetscapes research study, biometric tools were tested in triangulation with traditional methods of surveys and expert panels. The study unearthed situational evidence of the relationship between designed and perceived spaces by investigating the visual properties and experience of high-density environments in six major Western cities. Biometric technologies—Eye-Tracking, Galvanic Skin Response, mouse movement software and sound recording—were applied in a series of four laboratory tests (see Spanjar & Suurenbroek, 2020) and one outdoor test (see Hollander et al., 2021). The main aim was to measure the effects of applied design principles on users’ experiences, arousal levels and appreciation.Unintentionally, the research study implied the creation of a 360° built-environment assessment tool. The assessment tool enables researchers and planners to analyse (high-density) urban developments and, in particular, the architectural attributes that (subliminally) affect users’ experience, influencing their behaviour and perception of place. The tool opens new opportunities for research and planning practice to deconstruct the successes of existing high-density developments and apply the lessons learned for a more advanced, evidence-based promotion of human health and well-being.ReferencesBattisto, D., & Wilhelm, J. J. (Eds.). (2020). Architecture and Health Guiding Principles for Practice. Routledge, Taylor & Francis Group. Gifford, R. (2007). The Consequences of Living in High-Rise Buildings. Architectural Science Review, 50(1), 2–17. https://doi.org/https://doi.org/10.3763/asre.2007.5002 Hollander, J. B., Spanjar, G., Sussman, A., Suurenbroek, F., & Wang, M. (2021). Programming for the subliminal brain: biometric tools reveal architecture’s biological impact. In K. Menezes, P. de Oliveira-Smith, & A. V. Woodworth (Eds.), Programming for Health and Wellbeing in Architecture (pp. 136–149). Routledge, Taylor & Francis Group. https://doi.org/https://doi.org/10.4324/9781003164418 Ribeiro, A. I., Triguero-Mas, M., Jardim Santos, C., Gómez-Nieto, A., Cole, H., Anguelovski, I., Silva, F. M., & Baró, F. (2021). Exposure to nature and mental health outcomes during COVID-19 lockdown. A comparison between Portugal and Spain. Environment International, 154, 106664. https://doi.org/https://doi.org/10.1016/j.envint.2021.106664 Spanjar, G., & Suurenbroek, F. (2020). Eye-Tracking the City: Matching the Design of Streetscapes in High-Rise Environments with Users’ Visual Experiences. Journal of Digital Landscape Architecture (JoDLA), 5(2020), 374–385. https://gispoint.de/gisopen-paper/6344-eye-tracking-the-city-matching-the-design-of-streetscapes-in-high-rise-environments-with-users-visual-experiences.html?IDjournalTitle=6
Objectives: Promoting unstructured outside play is a promising vehicle to increase children’s physical activity (PA). This study investigates if factors of the social environment moderate the relationship between the perceived physical environment and outside play. Study design: 1875 parents from the KOALA Birth Cohort Study reported on their child’s outside play around age five years, and 1516 parents around age seven years. Linear mixed model analyses were performed to evaluate (moderating) relationships among factors of the social environment (parenting influences and social capital), the perceived physical environment, and outside play at age five and seven. Season was entered as a random factor in these analyses. Results: Accessibility of PA facilities, positive parental attitude towards PA and social capital were associated with more outside play, while parental concern and restriction of screen time were related with less outside play. We found two significant interactions; both involving parent perceived responsibility towards child PA participation. Conclusion: Although we found a limited number of interactions, this study demonstrated that the impact of the perceived physical environment may differ across levels of parent responsibility.
To date, most empirical studies have applied cross-sectional designs to investigate the relationship between the built environment (BE) and travel behaviour (TB). Since these studies cannot identify causal influence, the use of designs that provide data on multiple moments in time seems necessary. This article classifies these designs and describes how they can be applied to identify causality in this relationship. We recommend the use of natural experiments to assess the impact of changes in land use/infrastructure and prospective longitudinal designs to assess the impact of residential or job moves. In addition, the role of the BE can be explored by assessing the impact of (1) deliberate TB change experiments and (2) changes in household circumstances across different spatial contexts over time. The use of randomised experimental designs is recommended for the former and prospective longitudinal designs for the latter. The article concludes with an outlook on future research.
Verschillende maatschappelijke veranderingen dwingen de bouwbranche tot innovaties. Ondanks de potentie op het vlak van circulariteit en duurzaamheid van 3D-printen met kunststoffen kent deze technologie nog nauwelijks toepassingen in de bouw. Redenen hiervoor zijn achterblijvende materiaaleigenschappen en het verschil in cultuur tussen de bouwwereld en kunststofverwerkende industrie. Het bedrijf Phidias, richt zich op innovatieve en creatieve vastgoedconcepten. Samen met Zuyd Hogeschool (Zuyd) willen zij onderzoek doen naar het printen van bouwelementen waarbij de meerwaarde van 3D-printen wordt gezien in het combineren van materiaaleigenschappen. Zuyd heeft afgelopen jaren veel onderzoek gedaan naar het ontwikkelen van materialen voor 3D-printen (o.a. 2014-01-96 PRO). De volgende fase is de opgedane kennis toe te passen voor specifieke applicaties, in dit geval om de vraag van het MKB bedrijf Phidias te beantwoorden. Vanuit een ander MKB-bedrijf, MaukCC, ontwikkelaar van 3D printers, komt de vraag om de afstemming tussen materialen en hardware te optimaliseren. De combinatie van beide vragen uit het werkveld en de expertise bij Zuyd heeft geleid tot dit projectvoorstel. In deze pilotstudie ligt de focus voornamelijk op het 3D printen van één specifiek bouwkundig element met meerdere eigenschappen (bouwfysisch en constructief). De combinatie van eigenschappen wordt verkregen door gebruik te maken van twee (biobased) kunststoffen waarbij tevens een variatie wordt aangebracht in de geprinte structuren. Op deze manier kunnen grondstoffen worden gespaard. Het onderzoek sluit aan bij twee zwaartepunten van Zuyd, namelijk “Transitie naar een duurzaam gebouwde omgeving” en “Life science & materials”. De interdisciplinaire aanpak, op het grensvlak van de lectoraten “Material Sciences” (Gino van Strydonck) en “Sustainable Energy in the Built Environment” (Zeger Vroon) staat garant voor innovatief onderzoek. Integratie van onderwijs en onderzoek vindt plaats door studenten samen met een coach (docent) en ervaren professional aan dit onderzoek te laten werken in Communities for Development (CfD’s).
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.