BackgroundCritically ill patients are subject to severe skeletal muscle wasting during intensive care unit (ICU) stay, resulting in impaired short- and long-term functional outcomes and health-related quality of life. Increased protein provision may improve functional outcomes in ICU patients by attenuating skeletal muscle breakdown. Supporting evidence is limited however and results in great variety in recommended protein targets.MethodsThe PRECISe trial is an investigator-initiated, bi-national, multi-center, quadruple-blinded randomized controlled trial with a parallel group design. In 935 patients, we will compare provision of isocaloric enteral nutrition with either a standard or high protein content, providing 1.3 or 2.0 g of protein/kg/day, respectively, when fed on target. All unplanned ICU admissions with initiation of invasive mechanical ventilation within 24 h of admission and an expected stay on ventilator support of at least 3 days are eligible. The study is designed to assess the effect of the intervention on functional recovery at 1, 3, and 6 months following ICU admission, including health-related quality of life, measures of muscle strength, physical function, and mental health. The primary endpoint of the trial is health-related quality of life as measured by the Euro-QoL-5D-5-level questionnaire Health Utility Score. Overall between-group differences will be assessed over the three time points using linear mixed-effects models.DiscussionThe PRECISe trial will evaluate the effect of protein on functional recovery including both patient-centered and muscle-related outcomes.Trial registrationClinicalTrials.gov Identifier: NCT04633421. Registered on November 18, 2020. First patient in (FPI) on November 19, 2020. Expected last patient last visit (LPLV) in October 2023.
MULTIFILE
The International Protein Summit in 2016 brought experts in clinical nutrition and protein metabolism together from around the globe to determine the impact of high-dose protein administration on clinical outcomes and address barriers to its delivery in the critically ill patient. It has been suggested that high doses of protein in the range of 1.2-2.5 g/kg/d may be required in the setting of the intensive care unit (ICU) to optimize nutrition therapy and reduce mortality. While incapable of blunting the catabolic response, protein doses in this range may be needed to best stimulate new protein synthesis and preserve muscle mass. Quality of protein (determined by source, content and ratio of amino acids, and digestibility) affects nutrient sensing pathways such as the mammalian target of rapamycin. Achieving protein goals the first week following admission to the ICU should take precedence over meeting energy goals. High-protein hypocaloric (providing 80%-90% of caloric requirements) feeding may evolve as the best strategy during the initial phase of critical illness to avoid overfeeding, improve insulin sensitivity, and maintain body protein homeostasis, especially in the patient at high nutrition risk. This article provides a set of recommendations based on assessment of the current literature to guide healthcare professionals in clinical practice at this time, as well as a list of potential topics to guide investigators for purposes of research in the future.