The development of the World Wide Web, the emergence of social media and Big Data have led to a rising amount of data. Infor¬mation and Communication Technol¬ogies (ICTs) affect the environment in various ways. Their energy consumption is growing exponentially, with and without the use of ‘green’ energy. Increasing envi¬ronmental aware¬ness has led to discussions on sustainable development. The data deluge makes it not only necessary to pay attention to the hard‑ and software di¬mensions of ICTs but also to the ‘value’ of the data stored. In this paper, we study the possibility to methodically reduce the amount of stored data and records in organizations based on the ‘value’ of informa¬tion, using the Green Archiving Model we have developed. Reducing the amount of data and records in organizations helps in allowing organizations to fight the data deluge and to realize the objectives of both Digital Archiving and Green IT. At the same time, methodi¬cally deleting data and records should reduce the con¬sumption of electricity for data storage. As a consequencs, the organizational cost for electricity use should be reduced. Our research showed that the model can be used to reduce [1] the amount of data (45 percent, using Archival Retention Levels and Retention Schedules) and [2] the electricity con¬sumption for data storage (resulting in a cost reduction of 35 percent). Our research indicates that the Green Ar¬chiving Model is a viable model to reduce the amount of stored data and records and to curb electricity use for storage in organi¬zations. This paper is the result of the first stage of a research project that is aimed at devel¬oping low power ICTs that will automa¬tically appraise, select, preserve or permanently delete data based on their ‘value’. Such an ICT will automatically reduce storage capacity and reduce electricity con¬sumption used for data storage. At the same time, data dispos¬al will reduce overload caused by storing the sa¬me data in different for¬mats, it will lower costs and it reduces the po¬tential for liability.
DOCUMENT
The development of the World Wide Web, the emergence of social media and Big Data have led to a rising amount of data. Information and Communication Technologies (ICTs) affect the environment in various ways. Their energyconsumption is growing exponentially, with and without the use of ‘green’ energy. Increasing environmental awareness has led to discussions on sustainable development. The data deluge makes it not only necessary to pay attention to the hard- and software dimensions of ICTs but also to the ‘value’ of the data stored. In this paper, we study the possibility to methodically reduce the amount of stored data and records in organizations based on the ‘value’ of information, using the Green Archiving Model we have developed. Reducing the amount of data and records in organizations helps in allowing organizations to fight the data deluge and to realize the objectives of both Digital Archiving and Green IT. At the same time, methodically deleting data and records should reduce the consumption of electricity for data storage. As a consequence, the organizational cost for electricity use should be reduced. Our research showed that the model can be used to reduce [1] the amount of data (45 percent, using Archival Retention Levels and Retention Schedules) and [2] the electricity consumption for data storage (resulting in a cost reduction of 35 percent). Our research indicates that the Green Archiving Model is a viable model to reduce the amount of stored data and records and to curb electricity use for storage in organizations. This paper is the result of the first stage of a research project that is aimed at developing low power ICTs that will automatically appraise, select, preserve or permanently delete data based on their ‘value’. Such an ICT will automatically reduce storage capacity and reduce electricity consumption used for data storage. At the same time, data disposal will reduce overload caused by storing the same data in different formats, it will lower costs and it reduces the potential forliability.
DOCUMENT
Information and Communication Technologies (ICTs) affect the environment in various ways. Their energy consumption is growing exponentially, with and without the use of ‘green’ energy. Increasing environmental awareness within information science has led to discussions on sustainable development. ‘Green Computing’ has been introduced: the study and practice of environmentally sus- tainable computing. This can be defined as ‘designing, manufacturing, using, and disposing of com- puters, servers, and associated subsystems - such as monitors, printers, storage devices, and net- working and communications systems - efficiently and effectively with minimal or no impact on the en- vironment’. Nevertheless, the data deluge makes it not only necessary to pay attention to the hard- and software dimensions of ICTs but also to the value of the data stored. We explore the possibilities to use information and archival science to reduce the amount of stored data. In reducing this amount of stored data, it’s possible to curb unnecessary power consumption. The objectives of this paper are to develop a model (and test its viablility) to [1] increase awareness in organizations for the environ- mental aspects of data storage, [2] reduce the amount of stored data, and [3] reduce power consump- tion for data storage. This model integrates the theories of Green Computing, Information Value Chain (IVC) and Archival Retention Levels (ARLs). We call this combination ‘Green Archiving’. Our explora- tory research was a combination of desk research, qualitative interviews with information technology and information management experts, a focus group, and two exploratory case studies. This paper is the result of the first stage of a research project that is aimed at developing low power ICTs that will automatically appraise, select, preserve or permanently delete data based on their value. Such an ICT will automatically reduce storage capacity and curb power consumption used for data storage. At the same time, data disposal will reduce overload caused by storing the same data in different for- mats, it will lower costs and it reduces the potential for liability.
DOCUMENT
Electric vehicles and renewable energy sources are collectively being developed as a synergetic implementation for smart grids. In this context, smart charging of electric vehicles and vehicle-to-grid technologies are seen as a way forward to achieve economic, technical and environmental benefits. The implementation of these technologies requires the cooperation of the end-electricity user, the electric vehicle owner, the system operator and policy makers. These stakeholders pursue different and sometime conflicting objectives. In this paper, the concept of multi-objective-techno-economic-environmental optimisation is proposed for scheduling electric vehicle charging/discharging. End user energy cost, battery degradation, grid interaction and CO2 emissions in the home micro-grid context are modelled and concurrently optimised for the first time while providing frequency regulation. The results from three case studies show that the proposed method reduces the energy cost, battery degradation, CO2 emissions and grid utilisation by 88.2%, 67%, 34% and 90% respectively, when compared to uncontrolled electric vehicle charging. Furthermore, with multiple optimal solutions, in order to achieve a 41.8% improvement in grid utilisation, the system operator needs to compensate the end electricity user and the electric vehicle owner for their incurred benefit loss of 27.34% and 9.7% respectively, to stimulate participation in energy services.
DOCUMENT
Peatlands can be found in almost every country in the world, but we areonly just starting to realise their value and how to harness their potential asa powerhouse nature-based solution. The more we learn about peatlands,the more we value the important services they provide - controllingfloods, purifying and supplying water, safeguarding species,harbouring deep cultural meaning, inspiring creativity and offeringlivelihoods to millions of people. We cannot afford to lose them or abusethem. A lack of understanding of peatlands’ vital role in the landscape, combined with outdated policies and perverse incentives, means that peatlands continue to be drained and damaged around the world. Peatlands are our largest terrestrial organic carbon stock, and if we are to meet ourglobal goals and commitments, we must work hard to understand,protect, restore, and sustainably manage these vital ecosystems. This Peatlands Across Europe: Innovation & Inspiration Guide is a valuable step towards that reality – it captures important recommendations, shares the cutting edge experiences of peatland restoration pioneers, and identifies gaps, priorities and lessons from across Europe that can be taken up by peatland practitioners around the globe.
MULTIFILE
SEEV4-City is an innovation project funded by the European Union Interreg North Sea Region Programme. Its main objective is to demonstrate smart electric mobility and integration of renewable energy solutions and share the learnings gained. The project reports on the results of six Operational Pilots (OPs) which have different scales and are located in five different cities in four different countries in the North Sea Region.Loughborough OP (United Kingdom) is the smallest pilot, being a household with a bi-directional EV charging unit for the Nissan Leaf, a stationary battery, and a PV system. In the Kortrijk OP (Belgium), a battery system and a bi-directional charging unit for the delivery van (as well as a smart charging station for ebikes) were added to the energy system. In Leicester (United Kingdom), five unidirectional charging units were to be accompanied by four bi-directional charging units. The Johan Cruyff Arena OP is a larger pilot in Amsterdam, with a 2.8 MWh (partly) second life stationary battery storage for Frequency Control Regulation services and back-up power, 14 fast chargers and one bi-directional charger. Integrated into the existing energy system is a 1 MW PV system that is already installed on the roof. In the Oslo OP, 102 chargers were installed, of which two are fast chargers. A stationary battery energy storage system (BESS) supports the charging infrastructure and is used for peak shaving. The FlexPower OP in Amsterdam is the largest OP with over 900 EV charging outlets across the city, providing smart charging capable of reducing the energy peak demand in the evening.Before the start of the project, three Key Performance Indicators (KPIs) were determined:A. Estimated CO2 reductionB. Estimated increase in energy autonomyC. Estimated Savings from Grid Investment Deferral
DOCUMENT
This publication gives a different take on energy and energy transition. Energy goes beyond technology. Energy systems are about people: embedded in political orders and cultural institutions, shaped by social consumers and advocacy coalitions, and interconnected with changing parameters and new local and global markets. An overview and explanation of the three end states have been extracted from the original publication and appear in the first chapter. The second chapter consists of an analysis exploring key drivers of change until 2050, giving special attention to the role of international politics, social dynamics and high-impact ideas. The third chapter explores a case study of Power to Gas to illustrate how the development of new technologies could be shaped by regulatory systems, advocacy coalitions and other functions identified in the ‘technology innovation systems’ model. The fourth chapter explores the case of Energy Valley to understand how local or regional energy systems respond to drivers of change, based on their contextual factors and systems dynamics.
DOCUMENT
The SynergyS project aims to develop and assess a smart control system for multi-commodity energy systems (SMCES). The consortium, including a broad range of partners from different sectors, believes a SMCES is better able to incorporate new energy sources in the energy system. The partners are Hanze, TU Delft, University of Groningen, TNO, D4, Groningen Seaports, Emerson, Gain Automation Technology, Energy21, and Enshore. The project is supported by a Energy Innovation NL (topsector energie) subsidy by the Ministry of Economic Affairs.Groningen Seaports (Eemshaven, Chemical Park Delfzijl) and Leeuwarden are used as case studies for respectively an industrial and residential cluster. Using a market-based approach new local energy markets have been developed complementing the existing national wholesale markets. Agents exchange energy using optimized bidding strategies, resulting in better utilization of the assets in their portfolio. Using a combination of digital twins and physical assets from two field labs (ENTRANCE, The Green Village) performance of the SMCES is assessed. In this talk the smart multi-commodity energy system is presented, as well as some first results of the assessment. Finally an outlook is given how the market-based approach can benefit the development of energy hubs.
LINK
This magazine presents the highlights of the applied research project “Inclusive and climate-smart business models in Ethiopian and Kenyan dairy valuechains (CSDEK)”. The CSDEK applied research project was conducted in six case study areas, three in Ethiopia and three in Kenya. At the time of publishing this magazine, research was still ongoing in some of the study areas. The projectteam and researchers hope to contribute to creating awareness of climatesmartdairy practices and development of the dairy sector in Ethiopia and Kenya. In two of the study areas, collaboration between VHL and dairy stakeholders will continue, preferably through local networks in a Living Lab approach.
MULTIFILE