From the article: Abstract Sub-chronic toxicity studies of 163 non-genotoxic chemicals were evaluated in order to predict the tumour outcome of 24-month rat carcinogenicity studies obtained from the EFSA and ToxRef databases. Hundred eleven of the 148 chemicals that did not induce putative preneoplastic lesions in the sub-chronic study also did not induce tumours in the carcinogenicity study (True Negatives). Cellular hypertrophy appeared to be an unreliable predictor of carcinogenicity. The negative predictivity, the measure of the compounds evaluated that did not show any putative preneoplastic lesion in de sub-chronic studies and were negative in the carcinogenicity studies, was 75%, whereas the sensitivity, a measure of the sub-chronic study to predict a positive carcinogenicity outcome was only 5%. The specificity, the accuracy of the sub-chronic study to correctly identify non-carcinogens was 90%. When the chemicals which induced tumours generally considered not relevant for humans (33 out of 37 False Negatives) are classified as True Negatives, the negative predictivity amounts to 97%. Overall, the results of this retrospective study support the concept that chemicals showing no histopathological risk factors for neoplasia in a sub-chronic study in rats may be considered non-carcinogenic and do not require further testing in a carcinogenicity study.
DOCUMENT
The evolution of emerging technologies that use Radio Frequency Electromagnetic Field (RF-EMF) has increased the interest of the scientific community and society regarding the possible adverse effects on human health and the environment. This article provides NextGEM’s vision to assure safety for EU citizens when employing existing and future EMF-based telecommunication technologies. This is accomplished by generating relevant knowledge that ascertains appropriate prevention and control/actuation actions regarding RF-EMF exposure in residential, public, and occupational settings. Fulfilling this vision, NextGEM commits to the need for a healthy living and working environment under safe RF-EMF exposure conditions that can be trusted by people and be in line with the regulations and laws developed by public authorities. NextGEM provides a framework for generating health-relevant scientific knowledge and data on new scenarios of exposure to RF-EMF in multiple frequency bands and developing and validating tools for evidence-based risk assessment. Finally, NextGEM’s Innovation and Knowledge Hub (NIKH) will offer a standardized way for European regulatory authorities and the scientific community to store and assess project outcomes and provide access to findable, accessible, interoperable, and reusable (FAIR) data.
DOCUMENT
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NMon ILCs and other components of the serosal immune systemare scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NMmay lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NMon the serosal immune system.
DOCUMENT
The main objective of the study is to determine if non-specific physical symptoms (NSPS) in people with self-declared sensitivity to radiofrequency electromagnetic fields (RF EMF) can be explained (across subjects) by exposure to RF EMF. Furthermore, we pioneered whether analysis at the individual level or at the group level may lead to different conclusions. By our knowledge, this is the first longitudinal study exploring the data at the individual level. A group of 57 participants was equipped with a measurement set for five consecutive days. The measurement set consisted of a body worn exposimeter measuring the radiofrequency electromagnetic field in twelve frequency bands used for communication, a GPS logger, and an electronic diary giving cues at random intervals within a two to three hour interval. At every cue, a questionnaire on the most important health complaint and nine NSPS had to be filled out. We analysed the (time-lagged) associations between RF-EMF exposure in the included frequency bands and the total number of NSPS and self-rated severity of the most important health complaint. The manifestation of NSPS was studied during two different time lags - 0–1 h, and 1–4 h - after exposure and for different exposure metrics of RF EMF. The exposure was characterised by exposure metrics describing the central tendency and the intermittency of the signal, i.e. the time-weighted average exposure, the time above an exposure level or the rate of change metric. At group level, there was no statistically significant and relevant (fixed effect) association between the measured personal exposure to RF EMF and NSPS. At individual level, after correction for multiple testing and confounding, we found significant within-person associations between WiFi (the self-declared most important source) exposure metrics and the total NSPS score and severity of the most important complaint in one participant. However, it cannot be ruled out that this association is explained by residual confounding due to imperfect control for location or activities. Therefore, the outcomes have to be regarded very prudently. The significant associations were found for the short and the long time lag, but not always concurrently, so both provide complementary information. We also conclude that analyses at the individual level can lead to different findings when compared to an analysis at group level. https://doi.org/10.1016/j.envint.2019.104948 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
MULTIFILE
Polycyclic aromatic hydrocarbons (PAHs) are a group of more than hundred compounds that are ubiquitous in our environment. Some of these PAHs are known to be carcinogenic, mutagenic and teratogenic. PAHs have been detected in dried herbs that were cultured in The Netherlands as well as in other European countries above the maximum levels in dried herbs set by the EU (EU, 2015) for benzo(a)pyrene and the sum of the following four PAHs benzo(a)pyrene, benzo[a]anthracene, benzo[b]fluoranteen and chrysene. The origin of these PAHs in herbs is unknown. VNK cultivates, harvests and dries herbs including valerian and would like to identify the source of PAHs to comply to the EU limits for PAHs in herbs. The goal of the present study was to identify the source of PAHs found in valerian root, and to identify possible measures to reduce the concentration of PAHs in valerian root.
DOCUMENT
Introduction: To reduce continuously increasing costs in drug development, adverse effects of drugs need to be detected as early as possible in the process. In recent years, compound-induced gene expression profiling methodologies have been developed to assess compound toxicity, including Gene Ontology term and pathway over-representation analyses. The objective of this study was to introduce an additional approach, in which literature information is used for compound profiling to evaluate compound toxicity and mode of toxicity. Methods: Gene annotations were built by text mining in Medline abstracts for retrieval of co-publications between genes, pathology terms, biological processes and pathways. This literature information was used to generate compound-specific keyword fingerprints, representing over-represented keywords calculated in a set of regulated genes after compound administration. To see whether keyword fingerprints can be used for assessment of compound toxicity, we analyzed microarray data sets of rat liver treated with 11 hepatotoxicants. Results: Analysis of keyword fingerprints of two genotoxic carcinogens, two nongenotoxic carcinogens, two peroxisome proliferators and two randomly generated gene sets, showed that each compound produced a specific keyword fingerprint that correlated with the experimentally observed histopathological events induced by the individual compounds. By contrast, the random sets produced a flat aspecific keyword profile, indicating that the fingerprints induced by the compounds reflect biological events rather than random noise. A more detailed analysis of the keyword profiles of diethylhexylphthalate, dimethylnitrosamine and methapyrilene (MPy) showed that the differences in the keyword fingerprints of these three compounds are based upon known distinct modes of action. Visualization of MPy-linked keywords and MPy-induced genes in a literature network enabled us to construct a mode of toxicity proposal for MPy, which is in agreement with known effects of MPy in literature. Conclusion: Compound keyword fingerprinting based on information retrieved from literature is a powerful approach for compound profiling, allowing evaluation of compound toxicity and analysis of the mode of action. © 2007 Future Medicine Ltd.
DOCUMENT
Abstract: Since the first Oxford Survey of Childhood Cancer’s results were published, people have become more aware of the risks associated with prenatal exposure from diagnostic x rays. As a result, it has since been the subject of many studies. In this review, the results of recent epidemiological studies are summarized. The current international guidelines for diagnostic x-ray examinations were compared to the review. All epidemiological studies starting from 2007 and all relevant international guidelines were included. Apart from one study that involved rhabdomyosarcoma, no statistically significant associations were found between prenatal exposure to x rays and the development of cancer during 2007–2020. Most of the studies were constrained in their design due to too small a cohort or number of cases, minimal x-ray exposure, and/or data obtained from the exposed mothers instead of medical reports. In one of the studies, computed tomography exposure was also included, and this requires more and longer follow-up in successive studies. Most international guidelines are comparable, provide risk coefficients that are quite conservative, and discourage abdominal examinations of pregnant women.
DOCUMENT
We aim to set up a continuous low cost monitoring system for electromagnetic fields in the Netherlands, so that a trend in exposure to 5G signals can be observed. A number of options will be explored for this, such as software-defined radio and measurement nodes for specific 5G frequencies. We developed and tested low cost dedicated measurement nodes for four 5G bands: the 800, 1400, 2100 and 3500 MHz bands. Generally, the error is less than 1 dB and close to dynamic range limits (-65 to 5 dBm) the error increases to 3 dB.
DOCUMENT
Editorial on the Research Topic "Leveraging artificial intelligence and open science for toxicological risk assessment"
LINK
There has been a significant rise in the usage of e-cigarettes, commonly referred to as "vaping," among young individuals in recent years. This trend has raised alarm among parents, policymakers, and the healthcare industry. This research was conducted to better understand the motivations behind young people's use of e-cigarettes and to aid in the development of an effective media campaign to discourage this unhealthy behavior.
DOCUMENT