Introduction: Sensor-feedback systems can be used to support people after stroke during independent practice of gait. The main aim of the study was to describe the user-centred approach to (re)design the user interface of the sensor feedback system “Stappy” for people after stroke, and share the deliverables and key observations from this process. Methods: The user-centred approach was structured around four phases (the discovery, definition, development and delivery phase) which were fundamental to the design process. Fifteen participants with cognitive and/or physical limitations participated (10 women, 2/3 older than 65). Prototypes were evaluated in multiple test rounds, consisting of 2–7 individual test sessions. Results: Seven deliverables were created: a list of design requirements, a personae, a user flow, a low-, medium- and high-fidelity prototype and the character “Stappy”. The first six deliverables were necessary tools to design the user interface, whereas the character was a solution resulting from this design process. Key observations related to “readability and contrast of visual information”, “understanding and remembering information”, “physical limitations” were confirmed by and “empathy” was additionally derived from the design process. Conclusions: The study offers a structured methodology resulting in deliverables and key observations, which can be used to (re)design meaningful user interfaces for people after stroke. Additionally, the study provides a technique that may promote “empathy” through the creation of the character Stappy. The description may provide guidance for health care professionals, researchers or designers in future user interface design projects in which existing products are redesigned for people after stroke.
In this document, we provide the methodological background for the Safety atWork project. This document combines several project deliverables as defined inthe overall project plan: validation techniques and methods (D5.1.1), performanceindicators for safety at work (D5.1.2), personal protection equipment methods(D2.1.2), situational awareness methods (D3.1.2), and persuasive technology methods(D4.1.2).
MULTIFILE
Picture books with characters that promote healthy eating are increasingly being used to make this behavior more attractive. The first aim of this study was to investigate whether the effect of vegetable promoting picture books on toddlers' vegetable consumption differed according to the reading style and the use of a hand puppet during reading. The second aim was to investigate whether these effects were mediated by toddlers’ narrative involvement and character imitation. In a 2 (reading style: interactive vs. passive) x 2 (puppet use: with vs. without puppet) between-subjects design, 163 toddlers (2e3 years) were randomly assigned to one of the four reading conditions. The story was about a rabbit that loves to eat carrots. After the fourth reading day, the eating task was conducted in which children could eat freely from four different snacks, including carrots. The main finding was that interactive reading produced the greatest carrot consumption. The explanation for this effect was that interactive reading stimulated toddlers to imitate poses of the book characters, even more when interactive reading was supported by the use of a hand puppet. The findings underline that young children should be actively involved with health interventions in order for them to be effective.
LINK
Single-Use Plastics (SUPs) are at the centre of European Union Agenda aiming at reducing the plastic soup with the EU Directive 2019/904. SUPs reduction is pivotal also in the Dutch Government Agenda for the transition to a Circular Economy by 2050. Worldwide the data on SUPs use and disposal are impressive: humans use around 1.2 million plastic bottles per minute; approximately 91% of plastic is not recycled (www.earthday.org/fact-sheet-single-use-plastics/). While centralised processes of waste collection, disposal, and recycling strive to cope with such intense use of SUPs, the opportunities and constraints of establishing a networked grid of facilities enacting processes of SUPs collection and recycling with the active involvement of local community has remained unexplored. The hospitality sector is characterised by a widespread capillary network of small hospitality firms nested in neighbourhoods and rural communities. Our research group works with small hospitality firms, different stakeholders, and other research groups to prompt the transition of the hospitality sector towards a Circular Economy embracing not only the environmental and economic dimensions but also the social dimension. Hence, this project explores the knowledge and network needed to build an innovative pilot allowing to close the plastic loop within a hospitality facility by combining a 3D printing process with social inclusiveness. This will mean generating key technical and legal knowledge as well as a network of strategic experts and stakeholders to be involved in an innovative pilot setting a 3D printing process in a hospitality facility and establishing an active involvement of the local community. Such active involvement of the local inhabitants will be explored as SUPs collectors and end-users of upcycled plastics items realised with the 3D printer, as well as through opportunities of vocational training and job opportunities for citizens distant from the job market.
There is increasing interest for the use of Virtual Reality (VR) in the field of sustainable transportation and urban development. Even though much has been said about the opportunities of using VR technology to enhance design and involve stakeholders in the process, implementations of VR technology are still limited. To bridge this gap, the urban intelligence team of NHTV Breda University of Applied Sciences developed CycleSPEX, a Virtual Reality (VR) simulator for cycling. CycleSpex enables researchers, planners and policy makers to shape a variety of scenarios around knowledge- and design questions and test their impact on users experiences and behaviour, in this case (potential) cyclists. The impact of infrastructure enhancements as well as changes in the surrounding built environment can be tested, analysed an evaluated. The main advantage for planners and policy makers is that the VR environment enables them to test scenarios ex-ante in a safe and controlled setting.“The key to a smart, healthy and safe urban environment lies in engaging mobility. Healthy cities are often characterized by high quality facilities for the active modes. But what contributes to a pleasant cycling experience? CycleSPEX helps us to understand the relations between cyclists on the move and (designed) urban environments”