This paper extends the use of a framework identifying four types of barriers to lifelong learning (LLL): institutional, situational, dispositional, and informational. Initially applied to Nordic universities, the framework is now used to interview global stakeholders about LLL provisioning. The study explores commonalities and differences across regions, and the frameworkandapos;s potential to highlight key barriers and enablers, informing strategic and policy changes. The countries involved are Denmark, Norway, Finland, Holland, and Singapore. Following the description from each country, it identifies institutional, situational, dispositional, and informational barriers, which are interrelated and influence LLL in a more global context. Challenges include funding, balancing job and family commitments, and the need for a learnercentric approach. The study reveals that LLL plays a minor role in universities, with insufficient encouragement despite being included in strategies. Major obstacles include restrictive legislation, bureaucratic boundaries, and unstable funding models. Overcoming these could enable nationwide or transnational platforms for LLL.
MULTIFILE
Pyrolysis liquids from lignocellulosic biomass have the potential to be used as a feed for aromatics such as benzene, toluene, and xylenes (BTX) using catalytic upgrading with zeolites. We here report an experimental study on the conversion of various pyrolysis oil fractions to determine the most suitable one for BTX synthesis. For this purpose, the pyrolysis liquid was fractionated using several extraction/distillation steps to give four fractions with different chemical compositions. The fractions were analyzed in detail using nuclear magnetic resonance spectroscopy, elemental analysis, gas chromatography-mass spectroscopy, thermogravimetric analysis, Karl-Fischer titration, and gel permeation chromatography. Catalytic pyrolysis experiments were carried out using a tandem microreactor with H-ZSM-5 (23) as the catalyst. The highest BTX yield of 24% (on a carbon and dry basis) was obtained using the fractions enriched in phenolics, whereas all others gave far lower yields (4.4-9%, on a carbon and dry basis). Correlations were established between the chemical composition of the feed fraction and the BTX yield. These findings support the concept of a pyrolysis biorefinery, where the pyrolysis liquid is separated into well-defined fractions before further dedicated catalytic conversions to biobased chemicals and biofuels using tailored catalysts.
The research presented in this thesis has highlighted (bio)geochemical, hydrological, and wetland ecological processes that interact and enhance ecosystem development on wetlands built on fine sediment. A combination of greenhouse and laboratory experiments were conducted. Some measured data from these experiments formed important input for subsequent analysis in a modeling environment. The findings presented in Chapters 2-6 can be divided into four topics: 1) Plant–soil interactions in the terrestrial zone, 2) wetland–terrestrial processes influencing nutrient availability in the land–water zone, 3) effects of plants on sediment consolidation in the terrestrial zone, and 4) effects of bioturbation on nutrient availability in the aquatic zone. The next sections give a summary of the results for these four topics. The last section summarizes the recommendations formulated for the Marker Wadden project.
MULTIFILE