New approach methodologies predicting human cardiotoxicity are of interest to support or even replace in vivo-based drug safety testing. The present study presents an in vitro–in silico approach to predict the effect of inter-individual and inter-ethnic kinetic variations in the cardiotoxicity of R- and S-methadone in the Caucasian and the Chinese population. In vitro cardiotoxicity data, and metabolic data obtained from two approaches, using either individual human liver microsomes or recombinant cytochrome P450 enzymes (rCYPs), were integrated with physiologically based kinetic (PBK) models and Monte Carlo simulations to predict inter-individual and inter-ethnic variations in methadone-induced cardiotoxicity. Chemical specific adjustment factors were defined and used to derive dose–response curves for the sensitive individuals. Our simulations indicated that Chinese are more sensitive towards methadone-induced cardiotoxicity with Margin of Safety values being generally two-fold lower than those for Caucasians for both methadone enantiomers. Individual PBK models using microsomes and PBK models using rCYPs combined with Monte Carlo simulations predicted similar inter-individual and inter-ethnic variations in methadone-induced cardiotoxicity. The present study illustrates how inter-individual and inter-ethnic variations in cardiotoxicity can be predicted by combining in vitro toxicity and metabolic data, PBK modelling and Monte Carlo simulations. The novel methodology can be used to enhance cardiac safety evaluations and risk assessment of chemicals.
MULTIFILE
Traces of condom lubricants in fingerprints can be valuable information in cases of sexual assault. Ideally, not only confirmation of the presence of the condom but also determination of the type of condom brand used can be retrieved. Previous studies have shown to be able to retrieve information about the condom brand and type from fingerprints containing lubricants using various analytical techniques. However, in practice fingerprints often appear latent and need to be detected first, which is often achieved by cyanoacrylate fuming. In this study, we developed a desorption electrospray ionization mass spectrometry (DESI-MS) method which, combined with principal component analysis and linear discriminant analysis (PCA-LDA), allows for high accuracy classification of condom brands and types from fingerprints containing condom lubricant traces. The developed method is compatible with cyanoacrylate (CA) fuming. We collected and analyzed a representative dataset for the Netherlands comprising 32 different condoms. Distinctive lubricant components such as polyethylene glycol (PEG), polydimethylsiloxane (PDMS), octoxynol-9 and nonoxynol-9 were readily detected using the DESI-MS method. Based on the analysis of lubricant spots, a 99.0% classification accuracy was achieved. When analyzing lubricant containing fingerprints, an overall accuracy of 90.9% was obtained. Full chemical images could be generated from fingerprints, showing the distribution of lubricant components such as PEG and PDMS throughout the fingerprint, while still allowing for classification. The developed method shows potential for the development of DESI-MS based analyses of CA treated exogenous compounds from fingerprints for use in forensic science.
MULTIFILE