Full text met een HU Account Objective: To quantify diversity in components of self-management interventions and explore which components are associated with improvement in health-related quality of life (HRQoL) in patients with chronic heart failure (CHF), chronic obstructive pulmonary disease (COPD), or type 2 diabetes mellitus (T2DM). Methods: Systematic literature search was conducted from January 1985 through June 2013. Included studies were randomised trials in patients with CHF, COPD, or T2DM, comparing self-management interventions with usual care, and reporting data on disease-specific HRQoL. Data were analysed with weighted random effects linear regression models. Results: 47 trials were included, representing 10,596 patients. Self-management interventions showed great diversity in mode, content, intensity, and duration. Although self-management interventions overall improved HRQoL at 6 and 12 months, meta-regression showed counterintuitive negative effects of standardised training of interventionists (SMD = 0.16, 95% CI: 0.31 to 0.01) and peer interaction (SMD = 0.23, 95% CI 0.39 to 0.06) on HRQoL at 6 months. Conclusion: Self-management interventions improve HRQoL at 6 and 12 months, but interventions evaluated are highly heterogeneous. No components were identified that favourably affected HRQoL. Standardised training and peer interaction negatively influenced HRQoL, but the underlying mechanism remains unclear. Practice implications: Future research should address process evaluations and study response to selfmanagement on the level of individual patients
MULTIFILE
The objective of this study was to determine the feasibility and efficacy of an exercise training program to improve exercise capacity and fatigue level in pediatric patients with end-stage renal disease (ESRD). Twenty children on dialysis intended to perform a 12-week graded community-based exercise program. Exercise capacity and fatigue level were studied; muscle force and health-related quality of life were secondary outcomes. All outcomes were measured at baseline (T = 0) and after intervention (T = 1). Fourteen of the 20 patients (70%) either did not start the program or did not complete the program. Of these patients, seven did not complete or even start the exercise program because of a combination of lack of time and motivational problems. Six patients were not able to continue the program or were unable to do the follow-up measurements because of medical problems. Exercise capacity and muscle strength was higher after the exercise program in the children who completed the training. In conclusion, exercise training is difficult to perform in children with ESRD and is not always feasible in real-life situations for many children with ESRD.
Background: INTELLiVENT-adaptive support ventilation (ASV) is an automated closed-loop mode of invasive ventilation for use in critically ill patients. INTELLiVENT-ASV automatically adjusts, without the intervention of the caregiver, ventilator settings to achieve the lowest work and force of breathing. Aims: The aim of this case series is to describe the specific adjustments of INTELLiVENT-ASV in patients with acute hypoxemic respiratory failure, who were intubated for invasive ventilation. Study design: We describe three patients with severe acute respiratory distress syndrome (ARDS) because of COVID-19 who received invasive ventilation in our intensive care unit (ICU) in the first year of the COVID-19 pandemic. Results: INTELLiVENT-ASV could be used successfully, but only after certain adjustments in the settings of the ventilator. Specifically, the high oxygen targets that are automatically chosen by INTELLiVENT-ASV when the lung condition ‘ARDS’ is ticked had to be lowered, and the titration ranges for positive end expiratory pressure (PEEP) and inspired oxygen fraction (FiO2) had to be narrowed. Conclusions: The challenges taught us how to adjust the ventilator settings so that INTELLiVENT-ASV could be used in successive COVID-19 ARDS patients, and we experienced the benefits of this closed-loop ventilation in clinical practice. Relevance to clinical practice: INTELLiVENT-ASV is attractive to use in clinical practice. It is safe and effective in providing lung-protective ventilation. A closely observing user always remains needed. INTELLiVENT-ASV has a strong potential to reduce the workload associated with ventilation because of the automated adjustments.