Network Applied Design Research (NADR) made an inventory of the current state of Circular Design Research in the Netherlands. In this publication, readers will find a summary of six promising ‘gateways to circularity’ that may serve as entry points for future research initiatives. These six gateways are: Looped Systems; Extension of Useful Lifetime; Servitisation; New Materials and Production Techniques; Information Technology and Digitization; and Creating Public and Industry Awareness. The final chapter offers an outlook into topics that require more profound examination. The NADR hopes that this publication will serve as a starting point for discussions among designers, entrepreneurs, and researchers, with the goal of initiating future collaborative projects. It is the NADR's belief that only through intensive international cooperation, we can contribute to the realization of a sustainable, circular, and habitable world.
DOCUMENT
In our in-depth case study on two circular business models we found important roles for material scouts and networks. These key partners are essential for establishing circular business models and circular flow of materials. Besides, we diagnose that companies are having difficulties to develop viable value propositions and circular strategies. The paper was presented at NBM Nijmegen 2020 and will be published at a later date
DOCUMENT
This article investigates the phenomenon of rebound effects in relation to a transition to a Circular Economy (CE) through qualitative inquiry. The aim is to gain insights in manifestations of rebound effects by studying the Dutch textile industry as it transitions to a circular system, and to develop appropriate mitigation strategies that can be applied to ensure an effective transition. The rebound effect, known originally from the energy efficiency literature, occurs when improvements in efficiency or other technological innovations fail to deliver on their environmental promise due to (behavioral) economic mechanisms. The presence of rebound in CE contexts can therefore lead to the structural overstatement of environmental benefits of certain innovations, which can influence reaching emission targets and the preference order of recycling. In this research, the CE rebound effect is investigated in the Dutch textile industry, which is identified as being vulnerable to rebound, yet with a positive potential to avoid it. The main findings include the very low awareness of this effect amongst key stakeholders, and the identification of specific and general instances of rebound effects in the investigated industry. In addition, the relation of these effects to Circular Business Models and CE strategies are investigated, and placed in a larger context in order to gain a more comprehensive understanding about the place and role of this effect in the transition. This concerns the necessity for a new approach to how design has been practiced traditionally, and the need to place transitional developments in a systems perspective. Propositions that serve as theory-building blocks are put forward and include suggestions for further research and recommendations about dealing with rebound effects and shaping an eco-effective transition. Thomas Siderius, Kim Poldner, Reconsidering the Circular Economy Rebound effect: Propositions from a case study of the Dutch Circular Textile Valley, Journal of Cleaner Production, Volume 293, 2021, 125996, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2021.125996.
DOCUMENT
A rise in global population and welfare is depleting the earth’s resources and challenging the current predominantly linear economy, following a take-make-waste pattern, calling upon a shift towards a more circular economy (Bastein and Willems, 2019; Ellen MacArthur Foundation, 2013; Lüdeke-Freund et al., 2019). The Dutch government and the European Union have set the goal/ambition to become fully circular by 2050 thus striving towards a cleaner economy and reducing the dependency on scarce resources (European Commission, 2020; Government of Netherlands, 2016).
MULTIFILE
This report describes the Utrecht regio with regard to sustainability and circular business models.
DOCUMENT
Deze publicatie richt zich vooral op het concept Design Based Research,gezien vanuit het perspectief van de bijna 40 lectoren die de hogeschool rijk is. Dit lectoratenoverzicht kan worden beschouwd als een atlas of reisgids waarmee de lezer een route kan afleggen langs de verschillende lectoraten. De lectoraten die actief zijn op het gebied van de Service Economy worden beschreven in hoofdstuk 2. De lectoraten die actief zijn op het gebied van Vitale Regio worden beschreven in hoofdstuk 3. De lectoraten die actief zijn op het gebied van Smart Sustainable Industries worden beschreven in hoofdstuk 4. De lectoraten die actief zijn op het gebied van de hogeschoolbrede thema’s Design Based Education en Research worden beschreven in hoofdstuk 5. Tenslotte wordt er in hoofdstuk 6 een eerste aanzet gedaan om één of meer verbindende thema’s of werkwijzen te ontdekken in de aanpak van de verschillende lectoraten. Het is niet de bedoeling van deze publicatie om een definitief antwoord te geven op de vraag wat NHL Stenden precies bedoelt met het concept Design Based Research. Het doel van deze publicatie is wel om een indruk te krijgen van wat er allemaal gebeurt binnnen de lectoraten van NHL Stenden, en om nieuwsgierig te worden naar meer.
DOCUMENT
This lessons learned report gives an overview of the output and results of the first phase of the REDUCES project. The introduction states the relevance of combining a policy approach with business model analysis, and defines the objectives. Next, an overview is given of circular economy good business practices in the regions involved. Examining these business practices helped to define the regional needs for circular economy policy. This business approach proved to be a solid base for developing regional circular economy action plans, the last chapter of this report.
DOCUMENT
The Circular Wood 4.0 Workflow API is a comprehensive and automated “file-to-factory” system that bridges the gap between design using waste wood resources and production processes aligned with Smart Industry principles. This software serves as the core IT infrastructure for an end-to-end automated workflow, enabling seamless data flow from material availability to final production. Key features include full traceability, real-time process monitoring, and integration of design and manufacturing stages. The API is composed of several interconnected components that manage the entire workflow, from intelligent resource matching and design generation to production preparation and execution; facilitating efficient, sustainable, and transparent fabrication processes.
LINK
This study evaluates the effectiveness of the European Union's Corporate Sustainability Reporting Directive (CSRD) in quantitatively measuring the transition of companies to a circular economy. First, using the most recent literature review on circularity metrics, a complete overview of the currently available circularity metrics is developed. Subsequently, it is determined which circularity metrics can be generated with the available quantitative datapoints of CSRD. The metrics that can be generated were analyzed on their ability to cover all circular strategies, to represent different Product-as-a-Service systems and to acknowledge the key role of Critical Raw Materials in a circular economy. The study finds that, with data disclosed under CSRD, metrics can be generated to cover all circular strategies. However, gaps remain in representing pay-per-use and pay-perperformance systems and the use of Critical Raw Materials. Recommendations are to include ‘Product utilization’ and ‘Mass of Critical Raw Materials used’ in the data disclosed under CSRD and to have an independent institution report data to enable benchmarking of performances. Finally, this study concludes with an overview of the metrics which enable to measure circular transitions using data disclosed by CSRD
DOCUMENT
This communication aims to provide a framework on how to integrate the concept of Circular Economy (CE) when addressing real-life urban challenges such as resource scarcity, greenhouse gas emissions, pollution, waste, and high consumerism (Williams, 2019), through delivery of courses to students of various educational backgrounds. As part of the mission of Amsterdam University of Applied Sciences (AUAS) to be at the forefront of promoting sustainability through education and research, the Faculties of Technology and of Business and Economics joined forces to launch a new minor namely Circular Amsterdam: Mission Zero Waste. This minor focuses on the challenges and opportunities towards the circular transition in Amsterdam as well as in other European cities, by applying system level of thinking and real-life practical cases.CE model is a shift from the traditional linear “take, make, and dispose” way of doing business, to promoting circularity of the waste product through the 3R principles (reduce, reuse, recycle), which is nowadays extended to using 9R principles (0-Refuse, 1-Rethink, 2-Reduce, 3-Reuse, 4-Repair, 5-Refurbish, 6-Remanufacture, 7-Repurpose, 8-Recycle, and 9-Recover) (Potting et al., 2017). Transitioning to CE model needs intervention and multidisciplinary approach at different levels, hence requiring systems level of thinking. This means that technical, organizational, economic, behavioral, and regulatory aspects should be taken into account when designing business models, policies, or framework on CE. In the case of the minor, a system change including the challenges and opportunities needed in the cities, will be approached from different perspectives. In order to do this, the minor requires collaboration on a real-life problem using multiple backgrounds of students that include technical, economic, creative and social domains, as well as various stakeholders such as businesses, policy makers, and experts in circular economy.This minor will provide in-depth knowledge and skills based on its two tracks. The first track is called Circular Design & Technology. It focuses on the role of technology in CE, technological design, material use, production, use of circular resources in production, and impact analysis. The second track is called Circular Governance & Management. This track focuses on viable business case development, circular supply chain management, finance, regulations, entrepreneurship, and human capital. The focus of this communication will be the second track.Multidisciplinary teams each consisting of approximately four students will work on different projects. Examples of real-world, practical cases related to Circular Governance & Management track include: (1) development of business models addressing resource shortages and waste in the cities, (2) influencing consumer mindset when it comes to recycling and use of circular materials and products, (3) development of financially viable circular businesses, with due consideration of different instruments such as traditional bank loans, green/social bonds and loans, crowdfunding, or impact investing, and (4) tracking and reporting their sustainability performance with the voluntary use of sustainability metrics and reporting standards in order to better manage their risk and attract capital. These projects are linked to research expertises in AUAS. The course activities include (guest) lectures, workshops, co-creation sessions, excursions, presentations and peer reviews. The learning goals in the Circular Governance & Management track include being able to:1. Understand the foundations of CE and theory of change;2. Apply systems thinking to show how different interventions, such as consumer products, logistics models, business models or policy designs, can affect the transition from the existing linear to a CE model;3. Design an intervention, such as a product, logistic concept, business model, communication strategy or policy design supporting the CE, using students‘ backgrounds, ambitions and interests;4. Understand the financial and regulatory framework affecting the management and governance of (financially viable) circular businesses, including government incentives;5. Evaluate the economic, environmental and social impacts of developed intervention design on the city and its environment;6. Provide justification of students‘ design according to sustainability performance indicators;7. Collaborate with stakeholders in a multidisciplinary team; and8. Present, defend and communicate the results in English.
DOCUMENT