This communication aims to provide a framework on how to integrate the concept of Circular Economy (CE) when addressing real-life urban challenges such as resource scarcity, greenhouse gas emissions, pollution, waste, and high consumerism (Williams, 2019), through delivery of courses to students of various educational backgrounds. As part of the mission of Amsterdam University of Applied Sciences (AUAS) to be at the forefront of promoting sustainability through education and research, the Faculties of Technology and of Business and Economics joined forces to launch a new minor namely Circular Amsterdam: Mission Zero Waste. This minor focuses on the challenges and opportunities towards the circular transition in Amsterdam as well as in other European cities, by applying system level of thinking and real-life practical cases.CE model is a shift from the traditional linear “take, make, and dispose” way of doing business, to promoting circularity of the waste product through the 3R principles (reduce, reuse, recycle), which is nowadays extended to using 9R principles (0-Refuse, 1-Rethink, 2-Reduce, 3-Reuse, 4-Repair, 5-Refurbish, 6-Remanufacture, 7-Repurpose, 8-Recycle, and 9-Recover) (Potting et al., 2017). Transitioning to CE model needs intervention and multidisciplinary approach at different levels, hence requiring systems level of thinking. This means that technical, organizational, economic, behavioral, and regulatory aspects should be taken into account when designing business models, policies, or framework on CE. In the case of the minor, a system change including the challenges and opportunities needed in the cities, will be approached from different perspectives. In order to do this, the minor requires collaboration on a real-life problem using multiple backgrounds of students that include technical, economic, creative and social domains, as well as various stakeholders such as businesses, policy makers, and experts in circular economy.This minor will provide in-depth knowledge and skills based on its two tracks. The first track is called Circular Design & Technology. It focuses on the role of technology in CE, technological design, material use, production, use of circular resources in production, and impact analysis. The second track is called Circular Governance & Management. This track focuses on viable business case development, circular supply chain management, finance, regulations, entrepreneurship, and human capital. The focus of this communication will be the second track.Multidisciplinary teams each consisting of approximately four students will work on different projects. Examples of real-world, practical cases related to Circular Governance & Management track include: (1) development of business models addressing resource shortages and waste in the cities, (2) influencing consumer mindset when it comes to recycling and use of circular materials and products, (3) development of financially viable circular businesses, with due consideration of different instruments such as traditional bank loans, green/social bonds and loans, crowdfunding, or impact investing, and (4) tracking and reporting their sustainability performance with the voluntary use of sustainability metrics and reporting standards in order to better manage their risk and attract capital. These projects are linked to research expertises in AUAS. The course activities include (guest) lectures, workshops, co-creation sessions, excursions, presentations and peer reviews. The learning goals in the Circular Governance & Management track include being able to:1. Understand the foundations of CE and theory of change;2. Apply systems thinking to show how different interventions, such as consumer products, logistics models, business models or policy designs, can affect the transition from the existing linear to a CE model;3. Design an intervention, such as a product, logistic concept, business model, communication strategy or policy design supporting the CE, using students‘ backgrounds, ambitions and interests;4. Understand the financial and regulatory framework affecting the management and governance of (financially viable) circular businesses, including government incentives;5. Evaluate the economic, environmental and social impacts of developed intervention design on the city and its environment;6. Provide justification of students‘ design according to sustainability performance indicators;7. Collaborate with stakeholders in a multidisciplinary team; and8. Present, defend and communicate the results in English.
DOCUMENT
This report describes the Utrecht regio with regard to sustainability and circular business models.
DOCUMENT
From the introduction: In the Netherlands alone the potential of the circular economy for the economy is estimated at an annual cost saving effect of 7.3 billion Euros and job creation of 54,000 jobs (Bastein et al. 2013). However this potential needs to be used in applied solutions in often local settings such as cities. Cities are reliant on local development for their employment, business activity, and reduction of energy consumption, waste and air pollution in the city. In these areas cities feel more and more pressure and they set high ambitions. Last few years particularly cities have restrained the entering of polluting vehicles and improving the inner-city climate and air quality in general. Particularly construction transport is relevant to this aim while typically 30–40% of all transport is related to construction traditionally. This represents some 40% of vehicle emissions and road congestions. Governments and road users are keen to reduce this. While load factors of construction transport tend to remain structurally under 50%, in few cases down to 15% of their loading capacity a need to act is felt urgently (Vrijhoef 2015). Another aim of the circular economy city is that waste is re-used from demolished buildings into new design solutions for the built environment. To establish this circular city, there is a need of information on various levels in an open source structure. Examples of such data need can be, where and when is what kind of building material needed, and where can building materials be gained by demolishing buildings? For these kinds of questions, a smart 3D city model is proposed.This model should contain various types of intelligences, like GIS-BIM integration and real time and modelled environmental data. The combination of data creates new, innovative possibilities for the built environment (Heere et al. 2016). The conference took place in 2016, december 14th, the proceedings and this paper were published, 2017, November 25th : https://link.springer.com/chapter/10.1007/978-981-10-6190-5_129
DOCUMENT
In dit project zal Hogeschool Utrecht samen met praktijkpartners een vooronderzoek uitvoeren ten behoeve van de inrichting van een Living Lab waarmee in de context van duurzame renovatie nieuwe circulaire concep-ten door bedrijven in een werkelijke woonomgeving kunnen worden getest met bewoners. Optimale circulari-teit is daarbij de doelstelling waarbij het gaat om het sluiten van materiaalketens. Het gaat hierbij om een speci-aal ingerichte testwoning die telkens kortstondig wordt verhuurd aan geïnteresseerden en steeds kan worden aangepast. Hoe reageren bewoners op een circulair ontworpen woning en hoe wordt het gebruik ervaren? Dit onderzoek sluit daarmee aan bij de behoefte van bedrijven (bouwbedrijven, aannemers, ontwikkelaars van nieuwe materialen) die betrokken zijn bij duurzame renovaties om hun producten en diensten te kunnen uittes-ten (en aanpassen) met bewoners alvorens deze uit te zetten in de markt, en leidt uiteindelijk tot een sterkere positie van de ondernemers. In dit vooronderzoek wordt kennis ontwikkeld en ontsloten over circulair renoveren van woningen, over de invloed van bewoners op het succes van circulaire renovaties en over de manier waarop een Living Lab ingezet kan worden om meer kennis op te bouwen vanuit een reële praktijksituatie. De door studenten en onderzoe-kers van de HU samen met bedrijven ontwikkelde Selficient-woning zal hiervoor als Circulaire Living Lab woning worden ingezet. Tijdens dit project wordt de basis gelegd voor een langdurig onderzoeksproject waarin dit Circulaire Living Lab, maar daarnaast ook andere Living Labs worden ontwikkeld in het programma Wonen 3.0. Hiermee wordt een opbouw van de kennisbasis van Hogeschool Utrecht en Centre of Expertise Smart Sustainable Cities en partners op langere termijn mogelijk. Het project biedt ruimte aan de betrokkenheid van docenten en studenten via projecten op deelthema’s en geeft inzichten voor het vervolg van Living Labs als methode in het onderwijs. Het draagt daarmee tevens bij aan vernieuwing van het onderwijs.
Cities, the living place of 75% of European population, are crucial for sustainable transition in a just society. Therefore, the EU has launched a Mission for 100 Climate-Neutral Smart Cities (100CNSC). Construction is a key industry in making cities more sustainable. Currently, construction consumes 50% resources, uses 40% energy, and emits 36% greenhouse gasses. The sector is not cost-efficient, not human-friendly, and not healthy – it is negatively known for “3D: dirty, dangerous, demanding”. As such, the construction sector is not attractive for educated and skilled young professionals that are needed for the sustainable transition and for resolving the housing crisis. In contrast with the non-circular designs, materials and techniques that are still common in the construction industry, some other industries and fields have cultivated higher standards for sustainable products, especially in clean and efficient assembly and disassembly. Examples can be found in the maritime and off-shore industry, smart manufacturing, small electronics, and retail. The Hague University of Applied Sciences (THUAS) aims to become the leader of a strong European consortium for preliminary research to develop knowledge that is needed for the upcoming Horizon Europe proposal (within Cluster 4, Destination 1 - Re-manufacturing and De-manufacturing technologies) in relation with the EU Mission 100CNSC. The goals of this preliminary research are: (a) to articulate new concepts that will become an input for a new research proposal and (b) to organize a high-quality European consortium with high-quality partners for a lasting collaboration. This preliminary research project focuses on the question: How can the construction sector adopt and adapt the best practices in assembly and disassembly from other industries –including maritime, manufacturing and retails– in order to enhance circular urban construction and renovation with an active involvement of educated and skilled young professionals?
UNStudio, een in Amsterdam gevestigd, internationaal toonaangevend architectenbureau, wil hun Green Mile-plan1 voor het centrum van Amsterdam uitwerken om een 'post-pandemisch groen stedenbouwkundig ontwerp' voor de stad te onderzoeken - kunnen groene gebieden worden (her) ontworpen om ruimte aan voetgangers te geven, terwijl voorkomen wordt dat mensen zich niet op dezelfde plek ophopen? De Corona-pandemie benadrukte ook de noodzaak om vaart te zetten achter duurzaamheidsdoelstellingen, waaronder de ambitie om groenere stedelijke omgevingen te creëren. In dit voorstel wordt stadsmeubilair voor de Green Mile ontworpen en gerealiseerd met hergebruikte materialen, en met post-pandemische stedenbouwkundige en bouwkundige principes. GPGroot en Schijf, leveranciers van rest- en gebruikte bouwmaterialen2, willen hun kennis over circulaire materiaalverwerking en -levering in de stedelijke context graag verder ontwikkelen. Het initiatief van UNStudio biedt een unieke kans om deze kennis te ontwikkelen, in samenwerking met de HvA en het onderzoek in de Robot Studio, dat zich tot nu toe met name richt op circulair gebruik van hout voor binnen-toepassingen. Het project volgt een iteratief ontwerpproces van parametrisch ontwerp en digitale productie. Bij het ontwerp wordt rekening gehouden met functionele eisen en beschikbare materialen, evenals met de specifieke kenmerken van de stedelijke context waar het prototype zou kunnen worden geplaatst. De productie van het prototype zal worden uitgevoerd met 6-assige robots in de HvA Robot Studio. De resultaten zijn ontwerpen en een prototype, maar ook kennis over het verbinden van parametrisch ontwerp en robotproductie met buitentoepassingen, met bijzondere aandacht voor rest- en gebruikte materialen. Innovatieve aspecten zijn de overstap naar structureel belaste buitentoepassingen en het gebruik van een breder scala aan materialen dan alleen hout. Hiermee kan het project bijdragen aan de ontwikkeling van “smart industry” en de circulaire economie, beide relevant voor de maatschappelijke uitdagingen zoals vastgelegd in de nationale Kennis- en Innovatie-Agenda’s voor wetenschap en technologie.