This communication aims to provide a framework on how to integrate the concept of Circular Economy (CE) when addressing real-life urban challenges such as resource scarcity, greenhouse gas emissions, pollution, waste, and high consumerism (Williams, 2019), through delivery of courses to students of various educational backgrounds. As part of the mission of Amsterdam University of Applied Sciences (AUAS) to be at the forefront of promoting sustainability through education and research, the Faculties of Technology and of Business and Economics joined forces to launch a new minor namely Circular Amsterdam: Mission Zero Waste. This minor focuses on the challenges and opportunities towards the circular transition in Amsterdam as well as in other European cities, by applying system level of thinking and real-life practical cases.CE model is a shift from the traditional linear “take, make, and dispose” way of doing business, to promoting circularity of the waste product through the 3R principles (reduce, reuse, recycle), which is nowadays extended to using 9R principles (0-Refuse, 1-Rethink, 2-Reduce, 3-Reuse, 4-Repair, 5-Refurbish, 6-Remanufacture, 7-Repurpose, 8-Recycle, and 9-Recover) (Potting et al., 2017). Transitioning to CE model needs intervention and multidisciplinary approach at different levels, hence requiring systems level of thinking. This means that technical, organizational, economic, behavioral, and regulatory aspects should be taken into account when designing business models, policies, or framework on CE. In the case of the minor, a system change including the challenges and opportunities needed in the cities, will be approached from different perspectives. In order to do this, the minor requires collaboration on a real-life problem using multiple backgrounds of students that include technical, economic, creative and social domains, as well as various stakeholders such as businesses, policy makers, and experts in circular economy.This minor will provide in-depth knowledge and skills based on its two tracks. The first track is called Circular Design & Technology. It focuses on the role of technology in CE, technological design, material use, production, use of circular resources in production, and impact analysis. The second track is called Circular Governance & Management. This track focuses on viable business case development, circular supply chain management, finance, regulations, entrepreneurship, and human capital. The focus of this communication will be the second track.Multidisciplinary teams each consisting of approximately four students will work on different projects. Examples of real-world, practical cases related to Circular Governance & Management track include: (1) development of business models addressing resource shortages and waste in the cities, (2) influencing consumer mindset when it comes to recycling and use of circular materials and products, (3) development of financially viable circular businesses, with due consideration of different instruments such as traditional bank loans, green/social bonds and loans, crowdfunding, or impact investing, and (4) tracking and reporting their sustainability performance with the voluntary use of sustainability metrics and reporting standards in order to better manage their risk and attract capital. These projects are linked to research expertises in AUAS. The course activities include (guest) lectures, workshops, co-creation sessions, excursions, presentations and peer reviews. The learning goals in the Circular Governance & Management track include being able to:1. Understand the foundations of CE and theory of change;2. Apply systems thinking to show how different interventions, such as consumer products, logistics models, business models or policy designs, can affect the transition from the existing linear to a CE model;3. Design an intervention, such as a product, logistic concept, business model, communication strategy or policy design supporting the CE, using students‘ backgrounds, ambitions and interests;4. Understand the financial and regulatory framework affecting the management and governance of (financially viable) circular businesses, including government incentives;5. Evaluate the economic, environmental and social impacts of developed intervention design on the city and its environment;6. Provide justification of students‘ design according to sustainability performance indicators;7. Collaborate with stakeholders in a multidisciplinary team; and8. Present, defend and communicate the results in English.
DOCUMENT
This report describes the Utrecht regio with regard to sustainability and circular business models.
DOCUMENT
Construction and Demolition Waste (CDW) is the main driver of resource consumption and waste generation in Europe. Although most European countries achieved 70% recovery rate of CDW, the majority is used for backfilling. Therefore, opportunities for Circular Economy (CE) practices in CDW management are underexploited. This research identifies the innovative practices, barriers, and enablers for developing tailored-made designs of Urban Resource Centre (URC) for managing CDWs in four European cities namely Riga, Tartu, Kavala, and Barcelona. Qualitative methods using multiple case studies were used to draw generalizations from cases. Data was collected from reports and interviews with different stakeholders, and a validation workshop for designing URC of each city. Current innovative practices include recycling and upcycling of CDWs; use of green points, exchange platforms, and waste management apps; repair cafés; selective demolition; and (pilot) initiatives on resource centers that function as material exchange point, recycling center, workstation for repair and creative ideas, and prototyping hub, among others. The identified barriers and enablers can be categorized as governmental, market, and individual factors. First, local governments (municipalities) play a key role for facilitating CDW management via both support such as provision of subsidies, green procurement, and mandatory waste sorting, and through strict regulatory requirements. Second, URCs must be locally rooted with inclusion of citizens, grass roots initiatives, and schools/universities to increase community acceptance, awareness, and education on CDW management. Third, partnerships with local stakeholders, such as repair cafes, waste management companies, and local NGOs, is needed to operate the URCs both in short- and long-terms. And fourth, the creation of niche markets such as linking localism (e.g. locally crafted CE stores) and supplying to businesses in need of CDWs, can support the operation of URCs. The identified barriers and enablers can help further improve the design of URCs for each city.
MULTIFILE
In dit project zal Hogeschool Utrecht samen met praktijkpartners een vooronderzoek uitvoeren ten behoeve van de inrichting van een Living Lab waarmee in de context van duurzame renovatie nieuwe circulaire concep-ten door bedrijven in een werkelijke woonomgeving kunnen worden getest met bewoners. Optimale circulari-teit is daarbij de doelstelling waarbij het gaat om het sluiten van materiaalketens. Het gaat hierbij om een speci-aal ingerichte testwoning die telkens kortstondig wordt verhuurd aan geïnteresseerden en steeds kan worden aangepast. Hoe reageren bewoners op een circulair ontworpen woning en hoe wordt het gebruik ervaren? Dit onderzoek sluit daarmee aan bij de behoefte van bedrijven (bouwbedrijven, aannemers, ontwikkelaars van nieuwe materialen) die betrokken zijn bij duurzame renovaties om hun producten en diensten te kunnen uittes-ten (en aanpassen) met bewoners alvorens deze uit te zetten in de markt, en leidt uiteindelijk tot een sterkere positie van de ondernemers. In dit vooronderzoek wordt kennis ontwikkeld en ontsloten over circulair renoveren van woningen, over de invloed van bewoners op het succes van circulaire renovaties en over de manier waarop een Living Lab ingezet kan worden om meer kennis op te bouwen vanuit een reële praktijksituatie. De door studenten en onderzoe-kers van de HU samen met bedrijven ontwikkelde Selficient-woning zal hiervoor als Circulaire Living Lab woning worden ingezet. Tijdens dit project wordt de basis gelegd voor een langdurig onderzoeksproject waarin dit Circulaire Living Lab, maar daarnaast ook andere Living Labs worden ontwikkeld in het programma Wonen 3.0. Hiermee wordt een opbouw van de kennisbasis van Hogeschool Utrecht en Centre of Expertise Smart Sustainable Cities en partners op langere termijn mogelijk. Het project biedt ruimte aan de betrokkenheid van docenten en studenten via projecten op deelthema’s en geeft inzichten voor het vervolg van Living Labs als methode in het onderwijs. Het draagt daarmee tevens bij aan vernieuwing van het onderwijs.
Cities, the living place of 75% of European population, are crucial for sustainable transition in a just society. Therefore, the EU has launched a Mission for 100 Climate-Neutral Smart Cities (100CNSC). Construction is a key industry in making cities more sustainable. Currently, construction consumes 50% resources, uses 40% energy, and emits 36% greenhouse gasses. The sector is not cost-efficient, not human-friendly, and not healthy – it is negatively known for “3D: dirty, dangerous, demanding”. As such, the construction sector is not attractive for educated and skilled young professionals that are needed for the sustainable transition and for resolving the housing crisis. In contrast with the non-circular designs, materials and techniques that are still common in the construction industry, some other industries and fields have cultivated higher standards for sustainable products, especially in clean and efficient assembly and disassembly. Examples can be found in the maritime and off-shore industry, smart manufacturing, small electronics, and retail. The Hague University of Applied Sciences (THUAS) aims to become the leader of a strong European consortium for preliminary research to develop knowledge that is needed for the upcoming Horizon Europe proposal (within Cluster 4, Destination 1 - Re-manufacturing and De-manufacturing technologies) in relation with the EU Mission 100CNSC. The goals of this preliminary research are: (a) to articulate new concepts that will become an input for a new research proposal and (b) to organize a high-quality European consortium with high-quality partners for a lasting collaboration. This preliminary research project focuses on the question: How can the construction sector adopt and adapt the best practices in assembly and disassembly from other industries –including maritime, manufacturing and retails– in order to enhance circular urban construction and renovation with an active involvement of educated and skilled young professionals?
UNStudio, een in Amsterdam gevestigd, internationaal toonaangevend architectenbureau, wil hun Green Mile-plan1 voor het centrum van Amsterdam uitwerken om een 'post-pandemisch groen stedenbouwkundig ontwerp' voor de stad te onderzoeken - kunnen groene gebieden worden (her) ontworpen om ruimte aan voetgangers te geven, terwijl voorkomen wordt dat mensen zich niet op dezelfde plek ophopen? De Corona-pandemie benadrukte ook de noodzaak om vaart te zetten achter duurzaamheidsdoelstellingen, waaronder de ambitie om groenere stedelijke omgevingen te creëren. In dit voorstel wordt stadsmeubilair voor de Green Mile ontworpen en gerealiseerd met hergebruikte materialen, en met post-pandemische stedenbouwkundige en bouwkundige principes. GPGroot en Schijf, leveranciers van rest- en gebruikte bouwmaterialen2, willen hun kennis over circulaire materiaalverwerking en -levering in de stedelijke context graag verder ontwikkelen. Het initiatief van UNStudio biedt een unieke kans om deze kennis te ontwikkelen, in samenwerking met de HvA en het onderzoek in de Robot Studio, dat zich tot nu toe met name richt op circulair gebruik van hout voor binnen-toepassingen. Het project volgt een iteratief ontwerpproces van parametrisch ontwerp en digitale productie. Bij het ontwerp wordt rekening gehouden met functionele eisen en beschikbare materialen, evenals met de specifieke kenmerken van de stedelijke context waar het prototype zou kunnen worden geplaatst. De productie van het prototype zal worden uitgevoerd met 6-assige robots in de HvA Robot Studio. De resultaten zijn ontwerpen en een prototype, maar ook kennis over het verbinden van parametrisch ontwerp en robotproductie met buitentoepassingen, met bijzondere aandacht voor rest- en gebruikte materialen. Innovatieve aspecten zijn de overstap naar structureel belaste buitentoepassingen en het gebruik van een breder scala aan materialen dan alleen hout. Hiermee kan het project bijdragen aan de ontwikkeling van “smart industry” en de circulaire economie, beide relevant voor de maatschappelijke uitdagingen zoals vastgelegd in de nationale Kennis- en Innovatie-Agenda’s voor wetenschap en technologie.