Closed loop or ‘circular’ production systems known as Circular Economy and Cradle to Cradle represent a unique opportunity to radically revise the currently wasteful system of production. One of the challenges of such systems is that circular products need to be both produced locally with minimum environmental footprint and simultaneously satisfy demand of global consumers. This article presents a literature review that describes the application of circular methodologies to education for sustainability, which has been slow to adopt circular systems to the curriculum. This article discusses how Bachelor and Master-level students apply their understanding of these frameworks to corporate case studies. Two assignment-related case studies are summarized, both of which analyze products that claim to be 'circular'. The students' research shows that the first case, which describes the impact of a hybrid material soda bottle, does not meet circularity criteria. The second case study, which describes products and applications of a mushroom-based material, is more sustainable. However, the students' research shows that the manufacturers have omitted transport from the environmental impact assessment and therefore the mushroom materials may not be as sustainable as the manufacturers claim. As these particular examples showed students how green advertising can be misleading, applying “ideal” circularity principles as part of experiential learning could strengthen the curriculum. Additionally, this article recommends that sustainable business curriculum should also focus on de-growth and steady-state economy, with these radical alternatives to production becoming a central focus of education of responsible citizens. https://doi.org/10.1016/j.jclepro.2019.02.005 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
This lessons learned report gives an overview of the output and results of the first phase of the REDUCES project. The introduction states the relevance of combining a policy approach with business model analysis, and defines the objectives. Next, an overview is given of circular economy good business practices in the regions involved. Examining these business practices helped to define the regional needs for circular economy policy. This business approach proved to be a solid base for developing regional circular economy action plans, the last chapter of this report.
Network Applied Design Research (NADR) made an inventory of the current state of Circular Design Research in the Netherlands. In this publication, readers will find a summary of six promising ‘gateways to circularity’ that may serve as entry points for future research initiatives. These six gateways are: Looped Systems; Extension of Useful Lifetime; Servitisation; New Materials and Production Techniques; Information Technology and Digitization; and Creating Public and Industry Awareness. The final chapter offers an outlook into topics that require more profound examination. The NADR hopes that this publication will serve as a starting point for discussions among designers, entrepreneurs, and researchers, with the goal of initiating future collaborative projects. It is the NADR's belief that only through intensive international cooperation, we can contribute to the realization of a sustainable, circular, and habitable world.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols. Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation. The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol. A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols.Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation.The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol.A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.