In the field of climate change adaptation, the future matters. River futures influence the way adaptation projects are implemented in rivers. In this paper, we challenge the ways in which dominant paradigms and expert claims monopolise the truth concerning policies and designs of river futures, thereby sidelining and delegitimising alternative river futures. So far, limited work has been performed on the power of river futures in the context of climate change adaptation. We conceptualised the power of river futures through river imaginaries, i.e., collectively performed and publicly envisioned reproductions of riverine socionatures mobilised through truth claims of social life and order. Using the Border Meuse project as a case study, a climate change adaptation project in a stretch of the river Meuse in the south of the Netherlands, and a proclaimed success story of climate adaptation in Dutch water management, we elucidated how three river imaginaries (a modern river imaginary, a market-driven imaginary, and an eco-centric river imaginary) merged into an eco-modern river imaginary. Importantly, not only did the river futures merge, but their aligned truth regimes also merged. Thus, we argue that George Orwell’s famous quote, “who controls the past, controls the future: who controls the present, controls the past” can be extended to “who controls the future, controls how we see and act in the present, and how we rediscover the past”.
Permanent grassland soils can act as a sink for carbon and may therefore positively contribute to climate change mitigation and adaptation. We compared young (5–15 years since latest grassland renewal) with old (>20 years since latest grassland renewal) permanent grassland soils in terms of carbon stock, carbon sequestration, drought tolerance and flood resistance. The research was carried out on marine clay soil at 10 dairy farms with young and old permanent grassland. As hypothesized, the carbon stock was larger in old grassland (62 Mg C ha−1) topsoil (0–10 cm) than in young grassland topsoil (51 Mg C ha−1). The carbon sequestration rate was greater in young (on average 3.0 Mg C ha−1 year−1) compared with old grassland (1.6 Mg C ha−1 year−1) and determined by initial carbon stock. Regarding potential drought tolerance, we found larger soil moisture and soil organic matter (SOM) contents in old compared with young grassland topsoils. As hypothesized, the old grassland soils were more resistant to heavy rainfall as measured by water infiltration rate and macroporosity (at 20 cm depth) in comparison with the young grassland soils. In contrast to our hypothesis we did not find a difference in rooting between young and old permanent grassland, probably due to large variability in root biomass and root tip density. We conclude that old grasslands at dairy farms on clay soil can contribute more to the ecosystem services climate change mitigation and climate change adaptation than young grasslands. This study shows that under real farm conditions on a clay topsoil, carbon stock increases with grassland age and even after 30 years carbon saturation has not been reached. Further study is warranted to determine by how much extending grassland age can contribute to climate change mitigation and adaptation.
MULTIFILE
Climate change adaptation requires understanding of complex social ecological systems (SESs). One source of uncertainty in complex SESs is ambiguity, defined as the range and variety of existing perceptions in and of an SES, which are considered equally valid, resulting in a lack of a unique or single system understanding. Current modelling practices that acknowledge the presence of ambiguity in SESs focus on finding consensus with stakeholders; however, advanced methods for explicitly representing and aggregating ambiguity in SESs are underdeveloped. Moreover, understanding the influences of ambiguity on SES representation is limited. This paper demonstrates the presence and range of ambiguities in endogenous and exogenous system drivers and internal relationships based on individual fuzzy cognitive maps derived from stakeholder perceptions of climate change adaptation in Kenya and introduces an ambiguity based modelling process. Our results indicate that acknowledging ambiguity fundamentally changes SES representation and more advanced methods are required.
Wet and healthy peatlands have a strong natural potential to save carbon and, due to their waterbuffering capacity, play an important role in managing periods of excessive rains or droughts. Yet, inNWE regions large areas of peatlands are drained for peat mining, agriculture or forestry, whichmakes them CO2 emission sources rather than sinks. By restoring the capacity to buffer carbon andwater, BUFFER+ partners aim at climate change adaptation and mitigation in NWE regions, while atthe same time restore biodiversity and create new revenue streams.BUFFER+ involves 21 partners and 7 Associated Organisations from regions
Coastal nourishments, where sand from offshore is placed near or at the beach, are nowadays a key coastal protection method for narrow beaches and hinterlands worldwide. Recent sea level rise projections and the increasing involvement of multiple stakeholders in adaptation strategies have resulted in a desire for nourishment solutions that fit a larger geographical scale (O 10 km) and a longer time horizon (O decades). Dutch frontrunner pilot experiments such as the Sandmotor and Ameland inlet nourishment, as well as the Hondsbossche Dunes coastal reinforcement project have all been implemented from this perspective, with the specific aim to encompass solutions that fit in a renewed climate-resilient coastal protection strategy. By capitalizing on recent large-scale nourishments, the proposed Coastal landSCAPE project C-SCAPE will employ and advance the newly developed Dynamic Adaptive Policy Pathways (DAPP) approach to construct a sustainable long-term nourishment strategy in the face of an uncertain future, linking climate and landscape scales to benefits for nature and society. Novel long-term sandy solutions will be examined using this pathways method, identifying tipping points that may exist if distinct strategies are being continued. Crucial elements for the construction of adaptive pathways are 1) a clear view on the long-term feasibility of different nourishment alternatives, and 2) solid, science-based quantification methods for integral evaluation of the social, economic, morphological and ecological outcomes of various pathways. As currently both elements are lacking, we propose to erect a Living Lab for Climate Adaptation within the C-SCAPE project. In this Living Lab, specific attention is paid to the socio-economic implications of the nourished landscape, as we examine how morphological and ecological development of the large-scale nourishment strategies and their design choices (e.g. concentrated vs alongshore uniform, subaqueous vs subaerial, geomorphological features like artificial lagoons) translate to social acceptance.
The Hanze Hogeschool Groningen, the Authoridad Nacional del Agua, and Waterschap Noorderzijlvest, together with several other Dutch and Peruvian universities, co-organise an annual ClimateCafé in the northern Peruvian areas Piura and Tumbes, as part of the Blue Deal project. The ClimateCafé methodology is a multiple-day participatory workshop composed by an international community and powered by individual, corporate, public, and academic climate change adaptation influencers. The aim is to educate and inspire tech and non-tech people, focusing on young professionals in a “learning by doing” interaction.