The purpose of this paper is to discuss the insights gained by testing in a design studio a particular research-by-design strategy, focusing on the generation of innovative solutions for climate change adaptation. The strategy is based on the Design Thinking Process and has been applied in the climate adaptation design studio, which took place in 2022 at a Master of Architecture degree program in the Netherlands. The case study area was the Zernike university campus in Groningen, the Netherlands, which is situated in the verge between the city and the surrounding rural landscape, facing the urgent climate change challenges of the wider region, mainly floodings due to increased frequency of rainfalls and sea level rise. Furthermore, the area faces particular challenges, such as the increasing demand for serving additional needs, beyond the current educational and business related functions, such as (student) housing. Three indicative design research projects were selected to illustrate the tested research-by-design strategy, while systematic input has been collected from the participating students regarding the impact of this strategy on their design process. The results reveal that this strategy facilitates the iterative research-by-design process and hence offers a systematic approach to convert the threats of climate change into opportunities by unravelling the potentials of the study area, resulting in place-based, innovative and adaptive solutions.
There is a clear demand for a collaborative knowledge-sharing by online climate adaptation platforms that contribute to (inter)national knowledge exchange and raising awareness about climate change. Climate adaptation platforms (CAPs) can contain decision-support tools to facilitate the process of decision-making, and may include capacity building, networking, dissemination to assist planning and implementation of proven adaptation concepts such as Nature-based solutions (NBS) to mitigate floodings, drought, and heat stress. From 2014 over 6000 global climate adaptation projects have been mapped on an open source platform ClimateScan using citizen science. This chapter describes the potential of this climate adaption platform by illustrated case studies with mapped climate adaptation measures in Africa, Asia, and Europe. The case studies illustrate engagement and tangible results related to online platforms such as: the period of relevance of ClimateScan, inclusiveness and engagement of users in different stages and continents. Workshops in Indonesia illustrate the need for validation of needs from potential users before implementing CAPs. Analyzing projects in Africa showcase best management practices in water conservation and water demand management that are of interest in many other regions in the world facing drought. In Europe detailed analysis of over 3000 climate adaptation measures in relation to neighborhood typologies is inspiring urban planners and stormwater managers to design, plan, and implement climate resilient measures with more confidence. These three global examples illustrate that mapping, promoting, and sharing knowledge about implemented proven concepts is raising awareness, contribute to community-building, and accelerate climate action around the world.
Effects of climate change in cities are evident and are expected to increase in the future, demanding adaptation. In order to share knowledge, raise awareness, and build capacity on climate adaptation, the first concept of a “ClimateCafé” has been utilized since 2012 in 25 events all over the world. In 8 years ClimateCafé grew into a field education concept involving different fields of science and practice for capacity building in climate change adaptation. This chapter describes the need, method, and results of ClimateCafés and provides tools for organizing a ClimateCafé in a context-specific case. Early ClimateCafés in the Philippines are compared with the ClimateCafé in Peru to elucidate the development of this movement, in which one of the participants of ClimateCafé Philippines 2016 became the co-organizer of ClimateCafé Peru in 2019. The described progress of ClimateCafés provides detailed information on the dynamic methodological aspects, holding different workshops. The workshops aim at generating context-specific data on climate adaptation by using tools and innovative data collection techniques addressing deep uncertainties that come with climate change adaptation. Results of the workshops show that context-specific, relevant, multidisciplinary data can be gathered in a short period of time with limited resources, which promotes the generation of ideas that can be used by local stakeholders in their local context. A ClimateCafé therefore stimulates accelerated climate action and support for adaptation solutions, from the international and the local, from the public and private sector, to ensure we learn from each other and work together for a climate resilient future. The methodology of ClimateCafé is still maturing and the evaluation of the ClimateCafés over time leads to improvements which are applied during upcoming ClimateCafés, giving a clear direction for further development of this methodology for knowledge exchange, capacity building, and bridging the gap between disciplines within climate adaptation.
Wet and healthy peatlands have a strong natural potential to save carbon and, due to their waterbuffering capacity, play an important role in managing periods of excessive rains or droughts. Yet, inNWE regions large areas of peatlands are drained for peat mining, agriculture or forestry, whichmakes them CO2 emission sources rather than sinks. By restoring the capacity to buffer carbon andwater, BUFFER+ partners aim at climate change adaptation and mitigation in NWE regions, while atthe same time restore biodiversity and create new revenue streams.BUFFER+ involves 21 partners and 7 Associated Organisations from regions
Coastal nourishments, where sand from offshore is placed near or at the beach, are nowadays a key coastal protection method for narrow beaches and hinterlands worldwide. Recent sea level rise projections and the increasing involvement of multiple stakeholders in adaptation strategies have resulted in a desire for nourishment solutions that fit a larger geographical scale (O 10 km) and a longer time horizon (O decades). Dutch frontrunner pilot experiments such as the Sandmotor and Ameland inlet nourishment, as well as the Hondsbossche Dunes coastal reinforcement project have all been implemented from this perspective, with the specific aim to encompass solutions that fit in a renewed climate-resilient coastal protection strategy. By capitalizing on recent large-scale nourishments, the proposed Coastal landSCAPE project C-SCAPE will employ and advance the newly developed Dynamic Adaptive Policy Pathways (DAPP) approach to construct a sustainable long-term nourishment strategy in the face of an uncertain future, linking climate and landscape scales to benefits for nature and society. Novel long-term sandy solutions will be examined using this pathways method, identifying tipping points that may exist if distinct strategies are being continued. Crucial elements for the construction of adaptive pathways are 1) a clear view on the long-term feasibility of different nourishment alternatives, and 2) solid, science-based quantification methods for integral evaluation of the social, economic, morphological and ecological outcomes of various pathways. As currently both elements are lacking, we propose to erect a Living Lab for Climate Adaptation within the C-SCAPE project. In this Living Lab, specific attention is paid to the socio-economic implications of the nourished landscape, as we examine how morphological and ecological development of the large-scale nourishment strategies and their design choices (e.g. concentrated vs alongshore uniform, subaqueous vs subaerial, geomorphological features like artificial lagoons) translate to social acceptance.
The Hanze Hogeschool Groningen, the Authoridad Nacional del Agua, and Waterschap Noorderzijlvest, together with several other Dutch and Peruvian universities, co-organise an annual ClimateCafé in the northern Peruvian areas Piura and Tumbes, as part of the Blue Deal project. The ClimateCafé methodology is a multiple-day participatory workshop composed by an international community and powered by individual, corporate, public, and academic climate change adaptation influencers. The aim is to educate and inspire tech and non-tech people, focusing on young professionals in a “learning by doing” interaction.