Species responding differently to climate change form ‘transient communities’, communities with constantly changing species composition due to colonization and extinction events. Our goal is to disentangle the mechanisms of response to climate change for terrestrial species in these transient communities and explore the consequences for biodiversity conservation. We review spatial escape and local adaptation of species dealing with climate change from evolutionary and ecological perspectives. From these we derive species vulnerability and management options to mitigate effects of climate change. From the perspective of transient communities, conservation management should scale up static single species approaches and focus on community dynamics and species interdependency, while considering species vulnerability and their importance for the community. Spatially explicit and frequent monitoring is vital for assessing the change in communities and distribution of species. We review management options such as: increasing connectivity and landscape resilience, assisted colonization, and species protection priority in the context of transient communities.
MULTIFILE
This book of examples suggests a variety of options for easy and accessible climate-resilient retrofitting of residential areas. The case studies for a set of common streets in the Netherlands will match urban settings in other countries. The examples show that effective climate-resilient retrofitting is usually quite simple and does not necessarily incur higher costs than traditional approaches, particularly in flat areas. An examination of typical Dutch urban street designs shows how climate resilience can be incorporated under different conditions while keeping costs down with retrofitting. We have investigated the effects of four retrofitting variants and specified their cost and benefits, applying a typology of common residential street characteristics. We sincerely hope these case studies inspire you to get started in your own town, city and country, because the climate is right up your street.
Due to climate change the frequency of extreme precipitation increases. To reduce the risk of damage by flooding, municipalities will need to retrofit urban areas in a climate-resilient way. To justify this investment, they need insight in possibilities and costs of climate-resilient urban street designs. This chapter focused on how to retrofit characteristic (Dutch) typologies of urban residential areas. For ten cases alternative street layouts were designed with a determination of the life cycle costs and benefits. All designs are resilient to extreme rain events. The results show that most flat urban typologies can easily be retrofitted in a climate-resilient way without additional costs compared to the standard way of retrofitting. Climate proofing sloping areas are highly dependent on the situation downstream. When there is no space downstream to divert the water into waterways or parks, costs to provide storage easily rise above traditional levels for retrofitting. In addition to reducing flood risk, for each case one variant includes resilience to extreme heat events making use of green. The life cycle costs and benefits of the green variants showed that especially green designs in high-density urban areas result in a better value for money.
MULTIFILE
In recent years, disasters are increasing in numbers, location, intensity and impact; they have become more unpredictable due to climate change, raising questions about disaster preparedness and management. Attempts by government entities at limiting the impact of disasters are insufficient, awareness and action are urgently needed at the citizen level to create awareness, develop capacity, facilitate implementation of management plans and to coordinate local action at times of uncertainty. We need a cultural and behavioral change to create resilient citizens, communities, and environments. To develop and maintain new ways of thinking has to start by anticipating long-term bottom-up resilience and collaborations. We propose to develop a serious game on a physical tabletop that allows individuals and communities to work with a moderator and to simulate disasters and individual and collective action in their locality, to mimic real-world scenarios using game mechanics and to train trainers. Two companies–Stratsims, a company specialized in game development, and Society College, an organization that aims to strengthen society, combine their expertise as changemakers. They work with Professor Carola Hein (TU Delft), who has developed knowledge about questions of disaster and rebuilding worldwide and the conditions for meaningful and long-term disaster preparedness. The partners have already reached out to relevant communities in Amsterdam and the Netherlands, including UNUN, a network of Ukrainians in the Netherlands. Jaap de Goede, an experienced strategy simulation expert, will lead outreach activities in diverse communities to train trainers and moderate workshops. This game will be highly relevant for citizens to help grow awareness and capacity for preparing for and coping with disasters in a bottom-up fashion. The toolkit will be available for download and printing open access, and for purchase. The team will offer training and facilitate workshops working with local communities to initiate bottom-up change in policy making and planning.
In line with the ‘Natuur- en milieubeleidsplan Caribisch Nederland 2020-2030 (NMBP)’ the consortium intends with this research proposal to contribute to a prosperous society with a resilient population and healthy natural environment. The Caribbean Netherlands are dealing with a situation where imported vegetables and fruits are mostly imported and hardly affordable. This leads to consuming unhealthy food and high obesities rates as a consequence. A lack of good agricultural practices with regard to water-smart and nature inclusive agriculture, as well as limited coping capacities to deal with hazards and climate change, results in very limited local production and interest. Initiatives that focused only on agrotechnological solutions for food resilient futures turned out to be ineffective due to a lack of local ownership, which jeopardizes sustainability. Moreover, the ‘green’ and ‘blue’ domains are not seen as attractive career perspectives among youth, hampering a bright future for those domains. The aim of this research is to contribute to water-smart and nature inclusive food resilience embedded in a local participatory perspective in the Caribbean Netherlands. To address the above challenges, a living lab approach is adopted, where youth will be trained as (co)-facilitators (WP1) who will contribute to a participatory envisioning process and an articulation of food resilient futures (WP2). Finally, based on the envisioning process local stakeholders will select and implement experiments for food resilient futures followed by dissemination of results among key stakeholders as well as children and youth at the BES islands (WP3). This project strategy will lead to a network of a living lab where professionals and youth work together on food resilient futures. Training manuals and the results of experiments with regard to water and food system alternatives will be used actively to encourage youth to be involved in sustainable agriculture and consumption.
The COVID19 pandemic highlighted the vulnerability in supply chain networks in the healthcare sector and the tremendous waste problem of disposable healthcare products, such as isolation gowns. Single-use disposable isolation gowns cause great ecological impact. Reusable gowns can potentially reduce climate impacts and improve the resilience of healthcare systems by ensuring a steady supply in times of high demand. However, scaling reusable, circular isolation gowns in healthcare organizations is not straightforward. It is impeded by economic barriers – such as servicing costs for each use – and logistic and hygiene barriers, as processes for transport, storage and safety need to be (re)designed. Healthcare professionals (e.g. purchasing managers) lack complete information about social, economic and ecological costs, the true cost of products, to make informed circular purchasing decisions. Additionally, the residual value of materials recovered from circular products is overlooked and should be factored into purchasing decisions. To facilitate the transition to circular procurement in healthcare, purchasing managers need more fine-grained, dynamic information on true costs. Our RAAK Publiek proposal (MODLI) addresses a problem that purchasing managers face – making purchasing decisions that factor in social, economic and ecological costs and future benefits from recovered materials. Building on an existing consortium that developed a reusable and recyclable isolation gown, we design and develop an open-source decision-support tool to inform circular procurement in healthcare organizations and simulate various purchasing options of non-circular and circular products, including products from circular cascades. Circular procurement is considered a key driver in the transition to a circular economy as it contributes to closing energy and material loops and minimizes negative impacts and waste throughout entire product lifecycles. MODLI aims to support circular procurement policies in healthcare organizations by providing dynamic information for circular procurement decision making.