The period leading to and immediately after the release of the IPCC's fifth series of climate change assessments saw substantial efforts by climate change denial interests to portray anthropogenic climate change (ACC) as either unproven theory or a negligible contribution to natural climate variability, including the relationship between tourism and climate change. This paper responds to those claims by stressing that the extent of scientific consensus suggests that human-induced warming of the climate system is unequivocal. Second, it responds in the context of tourism research and ACC, highlighting tourism's significant contribution to greenhouse gas emissions, as well as climate change's potential impacts on tourism at different scales. The paper exposes the tactics used in ACC denial papers to question climate change science by referring to non-peer-reviewed literature, outlier studies, and misinterpretation of research, as well as potential links to think tanks and interest groups. The paper concludes that climate change science does need to improve its communication strategies but that the world-view of some individuals and interests likely precludes acceptance. The connection between ACC and sustainability illustrates the need for debate on adaptation and mitigation strategies, but that debate needs to be grounded in scientific principles not unsupported skepticism.
LINK
Social media is a transformative digital technology, collapsing the “six degrees ofseparation” which have previously characterized many social networks, and breaking down many of the barriers to individuals communicating with each other. Some commentators suggest that this is having profound effects across society, that social media have opened up new channels for public debates and have revolutionized the communication of prominent public issues such as climate change. In this article we provide the first systematic and critical review of the literature on social media and climate change. We highlight three key findings from the literature: a substantial bias toward Twitter studies, the prevalent approaches to researching climate change on social media (publics, themes, and professional communication), and important empirical findings (the use of mainstream information sources, discussions of “settled science,” polarization, and responses to temperature anomalies).Following this, we identify gaps in the existing literature that should beaddressed by future research: namely, researchers should consider qualitativestudies, visual communication and alternative social media platforms to Twitter.We conclude by arguing for further research that goes beyond a focus on sciencecommunication to a deeper examination of how publics imagine climate changeand its future role in social life.
In recent years, there have been significant changes in weather patterns, mainly caused by sharp increases in temperature, increases in carbon dioxide, and fluctuations in precipitation levels, negatively impacting agricultural production. Agricultural systems are characterized by being vulnerable to the variation of biophysical and socioeconomic factors involved in the development of agricultural activities. Agent-based models (ABMs) enable the study, analysis, and management of ecosystems through their ability to represent networks and their spatial nature. In this research, an ABM is developed to evaluate the behavior and determine the vulnerability in the sugarcane agricultural system; allowing the capitalization of knowledge through characteristics such as social ability and autonomy of the modeled agents through fuzzy logic and system dynamics. The methodol-ogy used includes information networks for a dynamic assessment of agricultural risk modeled by time series, system dynamics, uncertain parameters, and experience; which are developed in three stages: vulnerability indicators, crop vulnerability, and total system vulnerability. The development of ABM, a greater impact on the environmental contingency is noted due to the increase in greenhouse gas emissions and the exponential increase in extreme meteorological phenomena threatening the cultivation of sugarcane, making the agricultural sector more vulnerable and reducing the yield of the harvest.
The Dutch main water systems face pressing environmental, economic and societal challenges due to climatic changes and increased human pressure. There is a growing awareness that nature-based solutions (NBS) provide cost-effective solutions that simultaneously provide environmental, social and economic benefits and help building resilience. In spite of being carefully designed and tested, many projects tend to fail along the way or never get implemented in the first place, wasting resources and undermining trust and confidence of practitioners in NBS. Why do so many projects lose momentum even after a proof of concept is delivered? Usually, failure can be attributed to a combination of eroding political will, societal opposition and economic uncertainties. While ecological and geological processes are often well understood, there is almost no understanding around societal and economic processes related to NBS. Therefore, there is an urgent need to carefully evaluate the societal, economic, and ecological impacts and to identify design principles fostering societal support and economic viability of NBS. We address these critical knowledge gaps in this research proposal, using the largest river restoration project of the Netherlands, the Border Meuse (Grensmaas), as a Living Lab. With a transdisciplinary consortium, stakeholders have a key role a recipient and provider of information, where the broader public is involved through citizen science. Our research is scientifically innovative by using mixed methods, combining novel qualitative methods (e.g. continuous participatory narrative inquiry) and quantitative methods (e.g. economic choice experiments to elicit tradeoffs and risk preferences, agent-based modeling). The ultimate aim is to create an integral learning environment (workbench) as a decision support tool for NBS. The workbench gathers data, prepares and verifies data sets, to help stakeholders (companies, government agencies, NGOs) to quantify impacts and visualize tradeoffs of decisions regarding NBS.