Research work on robots in the context of neurodevelopmental disorders and psychology has traditionally been developed by researchers with a background primarily in engineering and computer science. As psychology is getting ready to play a more prominent role, there is a chance to apply specific psychological theory and methods. Such application may be facilitated by the establishment of a relevant scientific infrastructure, such as through a specialist journal on robopsychology.
MULTIFILE
The relationship between race and biology is complex. In contemporary medical science, race is a social construct that is measured via self-identification of study participants. But even though race has no biological essence, it is often used as variable in medical guidelines (e.g., treatment recommendations specific for Black people with hypertension). Such recommendations are based on clinical trials in which there was a significant correlation between self-identified race and actual, but often unmeasured, health-related factors such as (pharmaco) genetics, diet, sun exposure, etc. Many teachers are insufficiently aware of this complexity. In their classes, they (unintentionally) portray self-reported race as having a biological essence. This may cause students to see people of shared race as biologically or genetically homogeneous, and believe that race-based recommendations are true for all individuals (rather than reflecting the average of a heterogeneous group). This medicalizes race and reinforces already existing healthcare disparities. Moreover, students may fail to learn that the relation between race and health is easily biased by factors such as socioeconomic status, racism, ancestry, and environment and that this limits the generalizability of race-based recommendations. We observed that the clinical case vignettes that we use in our teaching contain many stereotypes and biases, and do not generally reflect the diversity of actual patients. This guide, written by clinical pharmacology and therapeutics teachers, aims to help our colleagues and teachers in other health professions to reflect on and improve our teaching on race-based medical guidelines and to make our clinical case vignettes more inclusive and diverse.
MULTIFILE
To prepare medical students appropriately for the management of toxicological emergencies, we have developed a simulation-based medical education (SBME) training in acute clinical toxicology. Our aim is to report on the feasibility, evaluation and lessons learned of this training. Since 2019, each year approximately 180 fifth-year medical students are invited to participate in the SBME training. The training consists of an interactive lecture and two SBME stations. For each station, a team of students had to perform the primary assessment and management of an intoxicated patient. After the training, the students completed a questionnaire about their experiences and confidence in clinical toxicology. Overall, the vast majority of students agreed that the training provided a fun, interactive and stimulating way to teach about clinical toxicology. Additionally, they felt more confident regarding their skills in this area. Our pilot study shows that SBME training was well-evaluated and feasible over a longer period.