In this paper, we report on the initial results of an explorative study that aims to investigate the occurrence of cognitive biases when designers use generative AI in the ideation phase of a creative design process. When observing current AI models utilised as creative design tools, potential negative impacts on creativity can be identified, namely deepening already existing cognitive biases but also introducing new ones that might not have been present before. Within our study, we analysed the emergence of several cognitive biases and the possible appearance of a negative synergy when designers use generative AI tools in a creative ideation process. Additionally, we identified a new potential bias that emerges from interacting with AI tools, namely prompt bias.
DOCUMENT
Dr. Inga Wolframm, lector Duurzame Paardenhouderij en Paardensport aan Hogeschool Van Hall Larenstein heeft met onderzoek aangetoond dat het huidige jureersysteem juryleden dwingt tot het inzetten van zogenaamde ‘cognitive shortcuts’ (cognitieve afkortingen) die zich vervolgens vertalen naar vooroordelen bij de beoordeling. In haar in het wetenschappelijke blad animals gepubliceerde artikel ‘Bias Cascade in Elite Dressage Judging’ (een waterval van juryvooroordeel in de topdressuursport’) toont Wolframm niet alleen dat judging bias bestaat, maar ook welke vooroordelen in welke mate een rol spelen bij de beoordeling.
LINK
Valuation judgement bias has been a research topic for several years due to its proclaimed effect on valuation accuracy. However, little is known on the emphasis of literature on judgement bias, with regard to, for instance, research methodologies, research context and robustness of research evidence. A synthesis of available research will establish consistency in the current knowledge base on valuer judgement, identify future research opportunities and support decision-making policy by educational and regulatory stakeholders how to cope with judgement bias. This article therefore, provides a systematic review of empirical research on real estate valuer judgement over the last 30 years. Based on a number of inclusion and exclusion criteria, we have systematically analysed 32 relevant papers on valuation judgement bias. Although we find some consistency in evidence, we also find the underlying research to be biased; the methodology adopted is dominated by a quantitative approach; research context is skewed by timing and origination; and research evidence seems fragmented and needs replication. In order to obtain a deeper understanding of valuation judgement processes and thus extend the current knowledge base, we advocate more use of qualitative research methods and scholars to adopt an interpretative paradigm when studying judgement behaviour.
DOCUMENT
Receiving the first “Rijbewijs” is always an exciting moment for any teenager, but, this also comes with considerable risks. In the Netherlands, the fatality rate of young novice drivers is five times higher than that of drivers between the ages of 30 and 59 years. These risks are mainly because of age-related factors and lack of experience which manifests in inadequate higher-order skills required for hazard perception and successful interventions to react to risks on the road. Although risk assessment and driving attitude is included in the drivers’ training and examination process, the accident statistics show that it only has limited influence on the development factors such as attitudes, motivations, lifestyles, self-assessment and risk acceptance that play a significant role in post-licensing driving. This negatively impacts traffic safety. “How could novice drivers receive critical feedback on their driving behaviour and traffic safety? ” is, therefore, an important question. Due to major advancements in domains such as ICT, sensors, big data, and Artificial Intelligence (AI), in-vehicle data is being extensively used for monitoring driver behaviour, driving style identification and driver modelling. However, use of such techniques in pre-license driver training and assessment has not been extensively explored. EIDETIC aims at developing a novel approach by fusing multiple data sources such as in-vehicle sensors/data (to trace the vehicle trajectory), eye-tracking glasses (to monitor viewing behaviour) and cameras (to monitor the surroundings) for providing quantifiable and understandable feedback to novice drivers. Furthermore, this new knowledge could also support driving instructors and examiners in ensuring safe drivers. This project will also generate necessary knowledge that would serve as a foundation for facilitating the transition to the training and assessment for drivers of automated vehicles.