The Interoceanic corridor of Mexico stands as a pivotal infrastructure project poised to significantly enhance Mexico's national and regional economy. Anticipated to start the operations in 2025 under the auspice of the national government, this corridor represents a strategic counterpart to the Panama Canal, which faces capacity constraints due to climate change and environmental impacts. Positioned as a promising alternative for transporting goods from Asia to North America, this corridor will offer a new transport route, yet its real operational capacity and spatial impacts remains uncertain. In this paper, the authors undertake a preliminary, informed analysis leveraging publicly available data and other specific information about infrastructure capacities and economic environment to forecast the potential throughput of this corridor upon full operationalization and in the future. Applying simulation techniques, the authors simulate the future operations of the corridor according to different scenarios to offer insights into its potential capacity and impacts. Furthermore, the paper delves into the opportunities and challenges that are inherent in this project and gives a comprehensive analysis of its potential impact and implications.
MULTIFILE
The need to better understand how to manage the real logistics operations in Schiphol Airport, a strategic hub for the economic development of the Netherlands, created the conditions to develop a project where academia and industry partnered to build a simulation model of the Schiphol Airport Landside operations. This paper presents such a model using discrete-event simulation. A realistic representation of the open road network of the airport as well as the (un)loading dock capacities and locations of the five ground handlers of Schiphol Airport was developed. Furthermore, to provide practitioners with applicable consolidation and truck-dispatching policies, some easy-to-implement rules are proposed and implemented in the model. Preliminary results from this model show that truck-dispatching policies have a higher impact than consolidation policies in terms of both distance travelled by cooperative logistic operators working within the airport and shipments’ average flow time. Furthermore, the approach presented in this study can be used for studying similar megahubs.
To aid HR practitioners in their design of firm specific HRM configurations, andcontribute to the state of the art HRM knowledge, we created a simulation model. In this paper we present the simulation model, and the serious game in which it was implemented, but focus on the practical and academical implication of creating and using our initial HRM simulation model.Deciding which HR-practices to select, and how to design them in a multiyear HRMconfiguration is a challenging task for any HR-practitioner due to the large number of interrelated options to pick from. In particular as, according to configurational HRM, the configuration of HR-practices needs to reflect the organizational strategy (vertical alignment) and show internal consistency (horizontal alignment). Currently, no (technological) tool aids HR-practitioners in their quest to design an aligned HRM configuration. To fill this void, we created an HRM simulation model and used it in a serious game which was played during workshops with HR-practitioners.Configurational HRM postulates that HRM configuration need to be both verticallyand horizontally aligned. However, to date, no specific information on how to make these levels of alignment happen is present. As a result, no specific hypothesis based on configurational HRM has been defined and empirical validation of this mode of theorizing is limited. Using the simulation model and serious game we aspire to specify the configurational mode of theorizing with a new level of detail enabling more precise empirical exploration of configurational HRM.The creation of an HRM simulation model and serious game proved to beworthwhile. During the workshops, HR-practitioners stated that the simulation model and game enables them to get to grips with the complexity of designing a firm specific HRM configuration. Furthermore, the simulation model enables us to specify configurational HRM to a new level of detail enabling a wide variety of research opportunities. The simulation model, serious game, and implications are discussed in this paper.
MULTIFILE