Like a marker pen on a map, the Covid-19 pandemic drastically highlighted the persisting existence of borders that used to play an ever decreasing role in people´s perception and behavior over the last decades. Yes, inner European borders are open in normal times. Yes, people, goods, services and ideas are crossing the border between Germany and the Netherlands freely. Yet we see that the border can turn into a barrier again quickly and effectively and it does so in many dimensions, some of them being not easily visible. Barriers hinder growth, development and exchange and in spite of our progress in creating a borderless Europe, borders still create barriers in many domains. Differing labor law, social security and tax systems, heterogeneous education models, small and big cultural differences, language barriers and more can impose severe limitations on people and businesses as they cross the border to travel, shop, work, hire, produce, buy, sell, study and research. Borders are of all times and will therefore always exist. But as they did so for a long time, huge opportunities can be found in overcoming the barriers they create. The border must not necessarily be a dividing line between two systems. It has the potential to become a center of growth and progress that build on joint efforts, cross-border cooperation, mutual learning and healthy competition. Developing this inherent potential of border regions asks for politics, businesses and research & education on both sides of the border to work together. The research group Cross-Border Business Development at Fontys University of Applied Science in Venlo conducts applied research on the impact of the national border on people and businesses in the Dutch-German border area. Students, employees, border commuters, entrepreneurs and employers all face opportunities as well as challenges due to the border. In collaboration with these stakeholders, the research chair aims to create knowledge and provide solutions towards a Dutch-German labor market, an innovative Dutch-German borderland and a futureproof Cross-Border economic ecosystem. This collection is not about the borderland in times of COVID-19. Giving meaning to the borderland is an ongoing process that started long before the pandemic and will continue far beyond. The links that have been established across the border and those that will in the future are multifaceted and so are the topics in this collection. Vincent Pijnenburg outlines a broader and introductory perspective on the dynamics in the Dutch-German borderland.. Carla Arts observes shopping behavior of cross-border consumers in the Euregion Rhine-Meuse-North. Jan Lucas explores the interdependencies of the Dutch and German economies. Jean Louis Steevensz presents a cross-border co-creation servitization project between a Dutch supplier and a German customer. Vincent Pijnenburg and Patrick Szillat analyze the exitence of clusters in the Dutch-German borderland. Christina Masch and Janina Ulrich provide research on students job search preferences with a focus on the cross-border labor market. Sonja Floto-Stammen and Natalia Naranjo-Guevara contribute a study of the market for insect-based food in Germany and the Netherlands. Niklas Meisel investigates the differences in the German and Dutch response to the Covid-19 crisis. Finally, Tolga Yildiz and Patrick Szillat show differences in product-orientation and customer-orientation between Dutch and German small and medium sized companies. This collection shows how rich and different the links across the border are and how manifold the perspectives and fields for a cross-border approach to regional development can be. This publication is as well an invitation. Grasping the opportunities that the border location entails requires cooperation across professional fields and scientific disciplines, between politics, business and researchers. It needs the contact with and the contribution of the people in the region. So do what we strive for with our cross-border research agenda: connect!
Abstract The automotive market shows rapid, sometimes disruptive innovations. Curriculum innovation in the professional higher education, such as the HAN Automotive Institute, could be an adequate response to changing labour market requirements. Most research done on the cooperation between professional practice and professional higher education, carries an educational perspective. Enriching the curriculum design with state-of-the-art themes, and using insight in rationalities of professionals, opens a new perspective to align education and practice. This paper elaborates on this alignment by addressing the design of an adaptive curriculum in the sixth out of eight semesters of the Automotive Institute bachelor curriculum, complying labour market requirements.
Circularity and recycling are gaining increased attention, yet the amount of recycled plastic applied in new products remains low. To accelerate its uptake by businesses, it will be useful to empirically investigate the barriers, enablers, needs and, ultimately, requirements to increase uptake of recycled plastic feedstock for the production of new plastic products. During the six focus group sessions we conducted, a value chain approach was used to map the factors that actors face regarding the implementation of recycled materials. The identified factors were structured based on three levels: determining whether a certain factor acted as a barrier or enabler, identifying the steps in the value chain that the factor directly affected and the category it could be subdivided into. The results were then further processed by translating the (rather abstract) needs of businesses into (specific) requirements from industry. This study presented eight business requirements that require actions from other actors in the value chain: design for recycling, optimised waste processing, standardisation, material knowledge, showing possibilities, information and education, cooperation, and regulation and government intervention. The main scientific contributions were the value chain perspective and the applied relevance of the findings. Future studies may delve deeper into the individual factors identified.
MULTIFILE
Within the food industry there is a need to be able to rapidly react to changing regulatory requirements and consumer preferences by adjusting recipes, processes, and products. A good knowledge of the properties of food ingredients is crucial in this process. Currently this knowledge is available in scattered heterogeneous resources such as scientific peer-reviewed articles, databases, recipes, food blogs as well as in the experience of food-experts. This prevents, in practice, the efficient integration and use of this knowledge, leading to inefficiency and missed opportunities. In this project we will build a structured database of properties of food ingredients, focusing in particular on the taste and texture properties. By large-scale collection and text mining on a large number of textual resources, a comprehensive data set on ingredient properties will be created, along with knowledge on the relationships between these ingredients. This database will then be used for to find new potential applications for healthy and taste enhancing ingredient combinations by network-based discovery methods and artificial intelligence algorithms will be used. A concrete focus will be on application questions formulated by the industrial partners. The resulting hypothesis will be validated in a real life setting at the premises of the industrial partners. The deliverables of this project will be: - A reusable open-access ingredient database that is accessible via a user-friendly web portal - A set of state-of-the-art mining algorithms that can address a wide variety of industry driven use cases - Novel product formulations that can be further developed for the consumer and business2business market
The value of data in general has become eminent in recent times. Autonomous vehicles and Connected Intelligent Transport Systems (C-ITS), in particular, are rapidly emerging fields that rely a lot on “big data”. Data acquisition has been an important part of automotive research and development for years even before the advent of Internet of Things (IoT). Most datalogging is done using specialized hardware that stores data in proprietary formats on traditional hard drives in PCs or dedicated managed servers. The use of Artificial Intelligence (AI) throughout the world and specifically in the automotive sector is largely reliant on the data for the development of new and reliable technologies. With the advent of IoT technologies, the reliability of data capture could be enhanced and can improve ease of real-time analytics for analysis/development of C-ITS services and Autonomous systems using vehicle data. Data acquisition for C-ITS applications requires putting together several different domains ranging from hardware, software, communication systems, cloud storage/processing, data analytics, legal and privacy aspects. This requires expertise from different domains that small and medium scale businesses usually lack. This project aims at investigating requirements that have to be met in order to collect data from vehicles. Furthermore, this project also aims at laying foundations required for the development of a unified guidelines required to collect data from vehicles. With these guidelines, businesses that intend to use vehicle data for their applications are not only guided on the technical aspects of data collection but also equally understand how data from vehicles could be harvested in a secure, efficient and responsible manner.