Background: Traditionally, research integrity studies have focused on research misbehaviors and their explanations. Over time, attention has shifted towards preventing questionable research practices and promoting responsible ones. However, data on the prevalence of responsible research practices, especially open methods, open codes and open data and their underlying associative factors, remains scarce.Methods: We conducted a web-based anonymized questionnaire, targeting all academic researchers working at or affiliated to a university or university medical center in The Netherlands, to investigate the prevalence and potential explanatory factors of 11 responsible research practices.Results: A total of 6,813 academics completed the survey, the results of which show that prevalence of responsible practices differs substantially across disciplines and ranks, with 99 percent avoiding plagiarism in their work but less than 50 percent pre-registering a research protocol. Arts and humanities scholars as well as PhD candidates and junior researchers engaged less often in responsible research practices. Publication pressure negatively affected responsible practices, while mentoring, scientific norms subscription and funding pressure stimulated them.Conclusions: Understanding the prevalence of responsible research practices across disciplines and ranks, as well as their associated explanatory factors, can help to systematically address disciplinary- and academic rank-specific obstacles, and thereby facilitate responsible conduct of research.
The inherent complexity of planning at sea, called maritime spatial planning (MSP), requires a planning approach where science (data and evidence) and stakeholders (their engagement and involvement) are integrated throughout the planning process. An increasing number of innovative planning support systems (PSS) in terrestrial planning incorporate scientific models and data into multi-player digital game platforms with an element of role-play. However, maritime PSS are still early in their innovation curve, and the use and usefulness of existing tools still needs to be demonstrated. Therefore, the authors investigate the serious game, MSP Challenge 2050, for its potential use as an innovative maritime PSS and present the results of three case studies on participant learning in sessions of game events held in Newfoundland, Venice, and Copenhagen. This paper focusses on the added values of MSP Challenge 2050, specifically at the individual, group, and outcome levels, through the promotion of the knowledge co-creation cycle. During the three game events, data was collected through participant surveys. Additionally, participants of the Newfoundland event were audiovisually recorded to perform an interaction analysis. Results from survey answers and the interaction analysis provide evidence that MSP Challenge 2050 succeeds at the promotion of group and individual learning by translating complex information to players and creating a forum wherein participants can share their thoughts and perspectives all the while (co-) creating new types of knowledge. Overall, MSP Challenge and serious games in general represent promising tools that can be used to facilitate the MSP process.
LINK
Cozmo is a real-life robot designed to interact with people playing games, making sounds, expressing emotions on a LCD screen and many other pre-programmable functions. We present the development and implementation of an educational platform for Cozmo mobile robot, with several features, including web server for user interface, computer vision, voice recognition, robot trajectory tracking control, among others. Functions for educational purposes were implemented, including mathematical operations, spelling, directions, and questions functions that gives more flexibility for the teachers to create their own scripts. In this system, a cloud voice recognition tool was implemented to improve the interactive system between Cozmo and the users. Also, a cloud computing vision system was used to perform object recognition using Cozmo's camera, to be applied on educational games. Other functions were created with the purpose of controlling the emotions and the motors of Cozmo to create more sophisticated scripts. To apply the functions on Cozmo robot, an interpreter algorithm was developed to translate the functions into Cozmo's programming language. To validate this work, the proposed framework was presented to several elementary school teachers (classes with students between 4 and 12). Students and teacher's impressions are reported in this text, and indicate that the proposed system can be a useful educational tool.