The last decade has seen an increasing demand from the industrial field of computerized visual inspection. Applications rapidly become more complex and often with more demanding real time constraints. However, from 2004 onwards the clock frequency of CPUs has not increased significantly. Computer Vision applications have an increasing demand for more processing power but are limited by the performance capabilities of sequential processor architectures. The only way to get more performance using commodity hardware, like multi-core processors and graphics cards, is to go for parallel programming. This article focuses on the practical question: How can the processing time for vision algorithms be improved, by parallelization, in an economical way and execute them on multiple platforms?
DOCUMENT
Abstract Despite the numerous business benefits of data science, the number of data science models in production is limited. Data science model deployment presents many challenges and many organisations have little model deployment knowledge. This research studied five model deployments in a Dutch government organisation. The study revealed that as a result of model deployment a data science subprocess is added into the target business process, the model itself can be adapted, model maintenance is incorporated in the model development process and a feedback loop is established between the target business process and the model development process. These model deployment effects and the related deployment challenges are different in strategic and operational target business processes. Based on these findings, guidelines are formulated which can form a basis for future principles how to successfully deploy data science models. Organisations can use these guidelines as suggestions to solve their own model deployment challenges.
DOCUMENT
Computer security incident response teams (CSIRTs) respond to a computer security incident when the need arises. Failure of these teams can have far-reaching effects for the economy and national security. CSIRTs often have to work on an ad hoc basis, in close cooperation with other teams, and in time constrained environments. It could be argued that under these working conditions CSIRTs would be likely to encounter problems. A needs assessment was done to see to which extent this argument holds true. We constructed an incident response needs model to assist in identifying areas that require improvement. We envisioned a model consisting of four assessment categories: Organization, Team, Individual and Instrumental. Central to this is the idea that both problems and needs can have an organizational, team, individual, or technical origin or a combination of these levels. To gather data we conducted a literature review. This resulted in a comprehensive list of challenges and needs that could hinder or improve, respectively, the performance of CSIRTs. Then, semi-structured in depth interviews were held with team coordinators and team members of five public and private sector Dutch CSIRTs to ground these findings in practice and to identify gaps between current and desired incident handling practices. This paper presents the findings of our needs assessment and ends with a discussion of potential solutions to problems with performance in incident response. https://doi.org/10.3389/fpsyg.2017.02179 LinkedIn: https://www.linkedin.com/in/rickvanderkleij1/
MULTIFILE