Publinova logo

Zoekresultaten

Producten 490

product

Resource-Efficient Image Buffer Architecture for Neighborhood Processors

Neighborhood image processing operations on Field Programmable Gate Array (FPGA) are considered as memory intensive operations. A large memory bandwidth is required to transfer the required pixel data from external memory to the processing unit. On-chip image buffers are employed to reduce this data transfer rate. Conventional image buffers, implemented either by using FPGA logic resources or embedded memories are resource inefficient. They exhaust the limited FPGA resources quickly. Consequently, hardware implementation of neighborhood operations becomes expensive, and integrating them in resource constrained devices becomes unfeasible. This paper presents a resource efficient FPGA based on-chip buffer architecture. The proposed architecture utilizes full capacity of a single Xilinx BlockRAM (BRAM36 primitive) for storing multiple rows of input image. To get multiple pixels/clock in a user defined scan order, an efficient duty-cycle based memory accessing technique is coupled with a customized addressing circuitry. This accessing technique exploits switching capabilities of BRAM to read 4 pixels in a single clock cycle without degrading system frequency. The addressing circuitry provides multiple pixels/clock in any user defined scan order to implement a wide range of neighborhood operations. With the saving of 83% BRAM resources, the buffer architecture operates at 278 MHz on Xilinx Artix-7 FPGA with an efficiency of 1.3 clock/pixel. It is thus capable to fulfill real time image processing requirements for HD image resolution (1080 × 1920) @103 fcps.

PDF

Resource-Efficient Image Buffer Architecture for Neighborhood Processors
product

Nature, natural resources and valuation in the Anthropocene

Biodiversity, including entire habitats and ecosystems, is recognized to be of great social and economic value. Conserving biodiversity has therefore become a task of international NGO’s as well as grass-roots organisations. The ‘classical’ model of conservation has been characterised by creation of designated nature areas to allow biodiversity to recover from the effects of human activities. Typically, such areas prohibit entry other than through commercial ecotourism or necessary monitoring activities, but also often involve commodification nature. This classical conservation model has been criticized for limiting valuation of nature to its commercial worth and for being insensitive to local communities. Simultaneously, ‘new conservation’ approaches have emerged. Propagating openness of conservation approaches, ‘new conservation’ has counteracted the calls for strict measures of biodiversity protection as the only means of protecting biodiversity. In turn, the ’new conservation’ was criticised for being inadequate in protecting those species that are not instrumental for human welfare. The aim of this article is to inquire whether sustainable future for non-humans can be achieved based on commodification of nature and/or upon open approaches to conservation. It is argued that while economic development does not necessarily lead to greater environmental protection, strict regulation combined with economic interests can be effective. Thus, economic approaches by mainstream conservation institutions cannot be easily dismissed. However, ‘new conservation’ can also be useful in opening up alternatives, such as care-based and spiritual approaches to valuation of nature. Complementary to market-based approaches to conservation, alternative ontologies of the human development as empathic beings embedded in intimate ethical relations with non-humans are proposed. https://www.linkedin.com/in/helenkopnina/

PDF

Nature, natural resources and valuation in the Anthropocene
product

Biodiversity conservation in climate change driven transient communities

Species responding differently to climate change form ‘transient communities’, communities with constantly changing species composition due to colonization and extinction events. Our goal is to disentangle the mechanisms of response to climate change for terrestrial species in these transient communities and explore the consequences for biodiversity conservation. We review spatial escape and local adaptation of species dealing with climate change from evolutionary and ecological perspectives. From these we derive species vulnerability and management options to mitigate effects of climate change. From the perspective of transient communities, conservation management should scale up static single species approaches and focus on community dynamics and species interdependency, while considering species vulnerability and their importance for the community. Spatially explicit and frequent monitoring is vital for assessing the change in communities and distribution of species. We review management options such as: increasing connectivity and landscape resilience, assisted colonization, and species protection priority in the context of transient communities.

MULTIFILE

Biodiversity conservation in climate change driven transient communities