Objective: The Tilburg Frailty Instrument (TFI) is an instrument for assessing frailty in community-dwelling older people. Since its development, many studies have been carried out examining the psychometric properties. The aim of this study was to provide a review of the main findings with regard to the reliability and validity of the TFI. Methods: We conducted a literature search in the PubMed and CINAHL databases on May 30, 2020. An inclusion criterion was the use of the entire TFI, part B, referring to the 15 components. No restrictions were placed on language or year of publication. Results: In total, 27 studies reported about the psychometric properties of the TFI. By far, most of the studies (n = 25) were focused on community-dwelling older people. Many studies showed that the internal consistency and test–retest reliability are good, which also applies for the criterion and construct validity. In many studies, adverse outcomes of interest were disability, increased health-care utilization, lower quality of life, and mortality. Regarding disability, studies predominantly show results that are excellent, with an area under the curve (AUC) >0.80. In addition, the TFI showed good associations with lower quality of life and the findings concerning mortality were at least acceptable. However, the association of the TFI with some indicators of health-care utilization can be indicated as poor (eg, visits to a general practitioner, hospitalization). Conclusion: Since population aging is occurring all over the world, it is important that the TFI is available and well known that it is a user-friendly instrument for assessing frailty and its psychometric properties being qualified as good. The findings of this assessment can support health-care professionals in selecting interventions to reduce frailty and delay its adverse outcomes, such as disability and lower quality of life.
To evaluate the construct validity and the inter-rater reliability of the Dutch Activity Measure for Post- Acute Care “6-clicks” Basic Mobility short form measuring the patient’s mobility in Dutch hospital care. First, the “6-clicks” was translated by using a forward-backward translation protocol. Next, 64 patients were assessed by the physiotherapist to determine the validity while being admitted to the Internal Medicine wards of a university medical center. Six hypotheses were tested regarding the construct “mobility” which showed that: Better “6-clicks” scores were related to less restrictive pre-admission living situations (p¼0.011), less restrictive discharge locations (p¼0.001), more independence in activities of daily living (p¼0.001) and less physiotherapy visits (p<0.001). A correlation was found between the “6-clicks” and length of stay (r¼0.408, p¼0.001), but not between the “6-clicks” and age (r¼0.180, p¼0.528). To determine the inter-rater reliability, an additional 50 patients were assessed by pairs of physiotherapists who independently scored the patients. Intraclass Correlation Coefficients of 0.920 (95%CI: 0.828–0.964) were found. The Kappa Coefficients for the individual items ranged from 0.649 (walking stairs) to 0.841 (sit-to-stand). The Dutch “6-clicks” shows a good construct validity and moderate-toexcellent inter-rater reliability when used to assess the mobility of hospitalized patients.
LINK
The six-minute walking test (6MWT) may be a practical test for the evaluation functional exercise capacity in children with end-stage renal disease (ESRD). The aim of this study was to investigate the 6MWT performance in children with ESRD compared to reference values obtained in healthy children and, secondly, to study the relationship between 6MWT performance with anthropometric variables, clinical parameters, aerobic capacity and muscle strength. Twenty patients (13 boys and seven girls; mean age 14.1 ± 3.4 years) on dialysis participated in this study. Anthropometrics were taken in a standardized manner. The 6MWT was performed in a 20-m-long track in a straight hallway. Aerobic fitness was measured using a cycle ergometer test to determine peak oxygen uptake (V⋅O2peak)(V⋅O2peak), peak rate (Wpeak) and ventilatory threshold (VT). Muscle strength was measured using hand-held myometry. Children with ESRD showed a reduced 6MWT performance (83% of predicted, p < 0.0001), irrespective of the reference values used. The strongest predictors of 6MWT performance were haematocrit and height. Regression models explained 59% (haematocrit and height) to 60% (haematocrit) of the variance in 6MWT performance. 6MWT performance was not associated with V⋅O2peakV⋅O2peak, strength, or other anthropometric variables, but it was significantly associated with haematocrit and height. Children with ESRD scored lower on the 6MWT than healthy children. Based on these results, the 6MWT may be a useful instrument for monitoring clinical status in children with ESRD, however it cannot substitute for other fitness tests, such as a progressive exercise test to measure V⋅O2peakV⋅O2peak or muscle strength tests.
Inzet van serious games als scholingsinstrument voor zorgprofessionals of als patiëntinterventie neemt sterk toe. Serious games kunnen kosten besparen en zorgkwaliteit verbeteren. (Potentiële) afnemers vragen, in lijn met het medische onderzoeksparadigma, vaak naar de klinische effectiviteit (internal validity) van deze games. Het gros van de Nederlandse game-ontwikkelaars bestaat echter uit kleine ondernemingen die het aan middelen en expertise ontbreekt om de hiervoor benodigde longitudinale onderzoekstrajecten uit te voeren. Tegelijkertijd tonen mkb’ers, meestal zonder ervan bewust te zijn, tijdens het game-ontwikkelproces al verschillende validiteitsvormen aan volgens het design-onderzoeksparadigma (face validity, construct validity, e.d.). Door dit niet bij hun afnemers kenbaar te maken, komt een constructieve dialoog over validiteit moeilijk op gang en lopen mkb’ers opdrachten mis. Het ontbreekt hen aan een begrippenkader en praktische handvatten. Bestaande raamwerken zijn nog te theorie-gedreven. Om mkb’ers te helpen de 'clash' te overbruggen tussen het medische en het design-onderzoeksparadigma, ontwikkelen lectoraten ICT-innovaties in de Zorg (Hogeschool Windesheim, penvoerder) en Serious Gaming (NHL Stenden Hogeschool) samen met elf mkb’ers, afnemers, studenten en experts in een learning community drie hulpmiddelen: •Checklist: praktische mkb-richtlijnen voor het vaststellen van validiteit; •Beslisboom: op basis waarvan mkb’ers onderbouwd de juiste validatiemethode kunnenselecteren; •Serious game: om samen met (potentiële) afnemers te spelen, zodat verschillende soortenvaliditeit expliciet benoemd worden. De hulpmiddelen worden inhoudelijk gevoed door casestudies waarin mkb’ers gevolgd worden in hoe validiteit momenteel wordt vastgesteld en geëxpliciteerd in het ontwikkelproces. Vervolgens brengen we de ontworpen hulpmiddelen in de mkb-praktijk voor evaluatie. Opgeleverde hulpmiddelen stellen mkb’ers in staat werkbare validatiemethoden toe te passen gedurende het game-ontwikkelproces om acceptabele bewijslast op te leveren voor potentiële afnemers, waardoor hun marktpositie versterkt. Ook draagt het project bij aan operationalisering van bestaande raamwerken en kunnen de hulpmiddelen in game design-curricula worden geïncorporeerd.
Examining in-class activities to facilitate academic achievement in higher educationThere is an increasing interest in how to create an effective and comfortable indoor environment for lecturers and students in higher education. To achieve evidence-based improvements in the indoor environmental quality (IEQ) of higher education learning environments, this research aimed to gain new knowledge for creating optimal indoor environmental conditions that best facilitate in-class activities, i.e. teaching and learning, and foster academic achievement. The academic performance of lecturers and students is subdivided into short-term academic performance, for example, during a lecture and long-term academic performance, during an academic course or year, for example. First, a systematic literature review was conducted to reveal the effect of indoor environmental quality in classrooms in higher education on the quality of teaching, the quality of learning, and students’ academic achievement. With the information gathered on the applied methods during the literature review, a systematic approach was developed and validated to capture the effect of the IEQ on the main outcomes. This approach enables research that aims to examine the effect of all four IEQ parameters, indoor air quality, thermal conditions, lighting conditions, and acoustic conditions on students’ perceptions, responses, and short-term academic performance in the context of higher education classrooms. Next, a field experiment was conducted, applying the validated systematic approach, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. Finally, a qualitative case study gathered lecturers’ and students’ perceptions related to the IEQ. Furthermore, how these users interact with the environment to maintain an acceptable IEQ was studied.During the systematic literature review, multiple scientific databases were searched to identify relevant scientific evidence. After the screening process, 21 publications were included. The collected evidence showed that IEQ can contribute positively to students’ academic achievement. However, it can also affect the performance of students negatively, even if the IEQ meets current standards for classrooms’ IEQ conditions. Not one optimal IEQ was identified after studying the evidence. Indoor environmental conditions in which students perform at their best differ and are task depended, indicating that classrooms should facilitate multiple indoor environmental conditions. Furthermore, the evidence provides practical information for improving the design of experimental studies, helps researchers in identifying relevant parameters, and lists methods to examine the influence of the IEQ on users.The measurement methods deduced from the included studies of the literature review, were used for the development of a systematic approach measuring classroom IEQ and students’ perceived IEQ, internal responses, and short-term academic performance. This approach allowed studying the effect of multiple IEQ parameters simultaneously and was tested in a pilot study during a regular academic course. The perceptions, internal responses, and short-term academic performance of participating students were measured. The results show associations between natural variations of the IEQ and students’ perceptions. These perceptions were associated with their physiological and cognitive responses. Furthermore, students’ perceived cognitive responses were associated with their short-term academic performance. These observed associations confirm the construct validity of the composed systematic approach. This systematic approach was then applied in a field experiment, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. A field study, with a between-groups experimental design, was conducted during a regular academic course in 2020-2021 to analyze the effect of different acoustic, lighting, and indoor air quality (IAQ) conditions. First, the reverberation time was manipulated to 0.4 s in the intervention condition (control condition 0.6 s). Second, the horizontal illuminance level was raised from 500 to 750 lx in the intervention condition (control condition 500 lx). These conditions correspond with quality class A (intervention condition) and B (control condition), specified in Dutch IEQ guidelines for school buildings (2015). Third, the IAQ, which was ~1100 ppm carbon dioxide (CO2), as a proxy for IAQ, was improved to CO2 concentrations under 800 ppm, meeting quality class A in both conditions. Students’ perceptions were measured during seven campaigns with a questionnaire; their actual cognitive and short-term academic performances were evaluated with validated tests and an academic test, composed by the lecturer, as a subject-matter-expert on the taught topic, covered subjects discussed during the lecture. From 201 students 527 responses were collected and analyzed. A reduced RT in combination with raised HI improved students’ perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students’ ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students’ perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknownFinally, a qualitative case study explored lecturers’ and students’ perceptions of the IEQ of classrooms, which are suitable to give tutorials with a maximum capacity of about 30 students. Furthermore, how lecturers and students interact with this indoor environment to maintain an acceptable IEQ was examined. Eleven lecturers of the Hanze University of Applied Sciences (UAS), located in the northern part of the Netherlands, and twenty-four of its students participated in three focus group discussions. The findings show that lecturers and students experience poor thermal, lighting, acoustic, and IAQ conditions which may influence teaching and learning performance. Furthermore, maintaining acceptable thermal and IAQ conditions was difficult for lecturers as opening windows or doors caused noise disturbances. In uncomfortable conditions, lecturers may decide to pause earlier or shorten a lecture. When students experienced discomfort, it may affect their ability to concentrate, their emotional status, and their quality of learning. Acceptable air and thermal conditions in classrooms will mitigate the need to open windows and doors. This allows lecturers to keep doors and windows closed, combining better classroom conditions with neither noise disturbances nor related distractions. Designers and engineers should take these end users’ perceptions into account, often monitored by facility management (FM), during the renovation or construction of university buildings to achieve optimal IEQ conditions in higher education classrooms.The results of these four studies indicate that there is not a one-size fits all indoor environmental quality to facilitate optimal in-class activities. Classrooms’ thermal environment should be effectively controlled with the option of a local (manual) intervention. Classrooms’ lighting conditions should also be adjustable, both in light color and light intensity. This enables lecturers to adjust the indoor environment to facilitate in-class activities optimally. Lecturers must be informed by the building operator, for example, professionals of the Facility Department, how to change classrooms’ IEQ settings. And this may differ per classroom because each building, in which the classroom is located, is operated differently apart from the classroom location in the building, exposure to the environment, and its use. The knowledge that has come available from this study, shows that optimal indoor environmental conditions can positively influence lecturers’ and students’ comfort, health, emotional balance, and performance. These outcomes have the capacity to contribute to an improved school climate and thus academic achievement.