In light of the current debate on the impact of our current food system on climate changeand related mitigation strategies, addressing the acceptance of sustainability aspects within consumerbehavioral issues is of vital importance. However, the field remains mute on how those strategies canbe designed and employed effectively to stimulate sustainable food consumption behavior. Immersivenarrative design is a promising approach to engaging consumers in this context. Within this study, weshed light on how to create immersive, impactful, interactive narratives in augmented reality (AR)together with consumers. We propose a novel approach to how those stories can be planned, utilizingparticipatory design methods. Within a step-wise process, we develop the storyboard together withconsumers. In the next step, we evaluate multiple approaches with AR application developers onhow this storyline can be enhanced in AR considering the perspective of various stakeholders likedevelopers, behavioral scientists, and consumers. Finally, we propose a conceptual framework for howimmersive narratives can be designed and validated in a collaborative, multidimensional approachfor impactful AR narrative content designs to stimulate sustainable food behavior for consumers.
It is of utmost importance to collect organic waste from households as a separate waste stream. If collected separately, it could be used optimally to produce compost and biogas, it would not pollute fractions of materials that can be recovered from residual waste streams and it would not deteriorate the quality of some materials in residual waste (e.g. paper). In rural areas with separate organic waste collection systems, large quantities of organic waste are recovered. However, in the larger cities, only a small fraction of organic waste is recovered. In general, citizens dot not have space to store organic waste without nuisances of smell and/or flies. As this has been the cause of low organic waste collection rates, collection schemes have been cut, which created a further negative impact. Hence, additional efforts are required. There are some options to improve the organic waste recovery within the current system. Collection schemes might be improved, waste containers might be adapted to better suit the needs, and additional underground organic waste containers might be installed in residential neighbourhoods. There are persistent stories that separate organic waste collection makes no sense as the collectors just mix all municipal solid waste after collection, and incinerate it. Such stories might be fuelled by the practice that batches of contaminated organic waste are indeed incinerated. Trust in the system is important. Food waste is often regarded as unrein. Users might hate to store food waste in their kitchen that could attract insects, or the household pets. Hence, there is a challenge for socio-psychological research. This might also be supported by technology, e.g. organic waste storage devices and measures to improve waste separation in apartment buildings, such as separate chutes for waste fractions. Several cities have experimented with systems that collect organic wastes by the sewage system. By using a grinder, kitchen waste can be flushed into the sewage system, which in general produces biogas by the fermentation of sewage sludge. This is only a good option if the sewage is separated from the city drainage system, otherwise it might create water pollution. Another option might be to use grinders, that store the organic waste in a tank. This tank could be emptied regularly by a collection truck. Clearly, the preferred option depends on local conditions and culture. Besides, the density of the area, the type of sewage system and its biogas production, and the facilities that are already in place for organic waste collection are important parameters. In the paper, we will discuss the costs and benefits of future organic waste options and by discussing The Hague as an example.
This paper provides a management perspective of organisational factors that contributes to the reduction of food waste through the application of design science principles to explore causal relationships between food distribution (organisational) and consumption (societal) factors. Qualitative data were collected with an organisational perspective from commercial food consumers along with large-scale food importers, distributors, and retailers. Cause-effect models are built and “what-if” simulations are conducted through the development and application of a Fuzzy Cognitive Map (FCM) approaches to elucidate dynamic interrelationships. The simulation models developed provide a practical insight into existing and emergent food losses scenarios, suggesting the need for big data sets to allow for generalizable findings to be extrapolated from a more detailed quantitative exercise. This research offers itself as evidence to support policy makers in the development of policies that facilitate interventions to reduce food losses. It also contributes to the literature through sustaining, impacting and potentially improving levels of food security, underpinned by empirically constructed policy models that identify potential behavioural changes. It is the extension of these simulation models set against a backdrop of a proposed big data framework for food security, where this study sets avenues for future research for others to design and construct big data research in food supply chains. This research has therefore sought to provide policymakers with a means to evaluate new and existing policies, whilst also offering a practical basis through which food chains can be made more resilient through the consideration of management practices and policy decisions.
Unwanted tomatoes represent ~20% of the European market, meaning that ~3 million metric tons of tomatoes are wasted every year. On a national scale, this translates to 7000 tons of tomato waste every year. Considering the challenge that food spillage represents worldwide and that the Netherlands wants to be circular by 2050, it is important to find a way to circularize these tomatoes back into the food chain. Moreover, tomatoes are the largest greenhouse crop in the Netherlands, which means that reducing the waste of this crop will positively and significantly affect the circularity and sustainability of the Dutch food system. A way to bring these tomatoes back into the food chain is through fermentation with lactic acid bacteria (LAB), which are already used in many food applications. In this project, we will assemble a unique new mix (co-culture) of LAB bacteria, which will lead to a stable fermented product with low sugar, low pH and a fresh taste, without compromising its nutritional value. This fermentation will prevent the contamination of the product with other microorganisms, providing the product with a prolonged shelf life, and will have a positive impact on the health of the consumers. Up until now, only non-fermented products have been produced from rejected tomatoes. This solution allows for an in-between product that can be used towards many different applications. This process will be upscaled to pilot scale with our consortium partners HAN BioCentre, Keep Food Simple, LLTB and Kramer B.V. The aim is to optimize the process and taste the end result of the different fermentations, so the end product is an attractive, circular, and tasty fermented tomato paste. These results will help to advance the circularity and sustainability of our food system, both at a national and European level.