This research contributes to understanding and shaping systems for OFMSW separation at urban Small and Medium Enterprises (SMEs, such as offices, shops and service providers). Separating SMEs’ organic fraction of municipal solid waste (OFMSW) is both an opportunity and a serious challenge for the transition towards circular cities. It is an opportunity because OFMSW represents approximately 40% of the total waste mass generated by these companies. It is challenging because post-collection separation is not feasible for OFMSW. Therefore, SMEs disposing of waste should separate their solid waste so that processing the organic fraction for reuse and recycling is practical and attainable. However, these companies do not experience direct advantages from the extra efforts in separating waste, and much of the OFMSW ends up in landfills, often resulting in unnecessary GHG emissions. Therefore, governments and waste processors are looking for ways to improve the OFMSW separation degree by urban companies disposing of waste through policies for behaviour change.There are multiple types of personnel at companies disposing of waste. These co-workers act according to their values, beliefs and norms. They adapt their behaviour continuously, influenced by the physical environment, events over time and self-evaluation of their actions. Therefore, waste separation at companies can be regarded as a Socio-Technical Complex Adaptive System (STCAS). Agent-based modelling and simulation are powerful methods to help understand STCAS. Consequently, we have created an agent-based model representing the evolution of behaviour regarding waste separation at companies in the urban environment. The model aims to show public and private stakeholders involved in solid waste collection, transport and processing to what extent behaviour change policies can shape the system towards desired waste separation degrees.We have co-created the model with participants utilising literature and empirical data from a case study on the transition of the waste collection system of a business park located at a former harbour area in Amsterdam, The Netherlands. First, a conceptual model of the system and the environment was set up through participatory workshops, surveys and interviews with stakeholders, domain experts and relevant actors. Together with our case participants, five policies that affect waste separation behaviour were included in the model. To model the behaviour of each company worker’s values, beliefs and norms during the separation and disposal of OFMSW, we have used the Value-Belief-Norm (VBN) Theory by Stern et al. (1999). We have collected data on waste collection behaviour and separation rates through interviews, workshops and a literature study to operationalise and validate the model.Simulation results show how combinations of behaviour profiles affect waste separation rates. Furthermore, findings show that single waste separation policies are often limitedly capable of changing the behaviour in the system. Rather, a combination of information and communication policies is needed to improve the separation of OFMSW, i.e., dissemination of a newsletter, providing personal feedback to the co-workers disposing of waste, and sharing information on the (improvement of) recycling rates.This study contributes to a better understanding of how policies can support co-workers’ pro-environmental behaviour for organic waste separation rates at SMEs. Thus, it shows policymakers how to stimulate the circular transition by actively engaging co-workers’ waste separation behaviour at SMEs. Future work will extend the model’s purpose by including households and policies supporting separating multiple waste types aimed at various R-strategies proposed by Potting et al. (2016).
MULTIFILE
Making food packaging more sustainable is a complex process. Research has shown that specific knowledge is needed to support packaging developers to holistically improve the sustainability of packaging. Within this study we aim to provide insights in the various tradeoffs designers face with the aim to provide insights for future sustainable food packaging (re)design endeavors. The study consists of analyzing and coding 19 reports in which bachelor students worked on assignments ranging from (1) analyzing the supply chain of a food product-packaging combination to (2) redesigning a specific food packaging. We identified 6 tradeoffs: (1) Perceived Sustainability vs. Achieved Sustainability, (2) Food Waste vs. Sustainability, (3) Branding vs. Sustainability, (4) Product Visibility vs. Sustainability, (5) Costs vs. Sustainability, and (6) Use Convenience vs Sustainability. We compared the six tradeoffs with literature. Two tradeoffs can be seen as additional to topics mentioned within literature, namely product visibility and use convenience. In addition, while preventing food waste is mentioned as an important functionality of food packaging, this functionality seems to be underexposed within practice.
MULTIFILE
This paper provides a management perspective of organisational factors that contributes to the reduction of food waste through the application of design science principles to explore causal relationships between food distribution (organisational) and consumption (societal) factors. Qualitative data were collected with an organisational perspective from commercial food consumers along with large-scale food importers, distributors, and retailers. Cause-effect models are built and “what-if” simulations are conducted through the development and application of a Fuzzy Cognitive Map (FCM) approaches to elucidate dynamic interrelationships. The simulation models developed provide a practical insight into existing and emergent food losses scenarios, suggesting the need for big data sets to allow for generalizable findings to be extrapolated from a more detailed quantitative exercise. This research offers itself as evidence to support policy makers in the development of policies that facilitate interventions to reduce food losses. It also contributes to the literature through sustaining, impacting and potentially improving levels of food security, underpinned by empirically constructed policy models that identify potential behavioural changes. It is the extension of these simulation models set against a backdrop of a proposed big data framework for food security, where this study sets avenues for future research for others to design and construct big data research in food supply chains. This research has therefore sought to provide policymakers with a means to evaluate new and existing policies, whilst also offering a practical basis through which food chains can be made more resilient through the consideration of management practices and policy decisions.
LINK
Unwanted tomatoes represent ~20% of the European market, meaning that ~3 million metric tons of tomatoes are wasted every year. On a national scale, this translates to 7000 tons of tomato waste every year. Considering the challenge that food spillage represents worldwide and that the Netherlands wants to be circular by 2050, it is important to find a way to circularize these tomatoes back into the food chain. Moreover, tomatoes are the largest greenhouse crop in the Netherlands, which means that reducing the waste of this crop will positively and significantly affect the circularity and sustainability of the Dutch food system. A way to bring these tomatoes back into the food chain is through fermentation with lactic acid bacteria (LAB), which are already used in many food applications. In this project, we will assemble a unique new mix (co-culture) of LAB bacteria, which will lead to a stable fermented product with low sugar, low pH and a fresh taste, without compromising its nutritional value. This fermentation will prevent the contamination of the product with other microorganisms, providing the product with a prolonged shelf life, and will have a positive impact on the health of the consumers. Up until now, only non-fermented products have been produced from rejected tomatoes. This solution allows for an in-between product that can be used towards many different applications. This process will be upscaled to pilot scale with our consortium partners HAN BioCentre, Keep Food Simple, LLTB and Kramer B.V. The aim is to optimize the process and taste the end result of the different fermentations, so the end product is an attractive, circular, and tasty fermented tomato paste. These results will help to advance the circularity and sustainability of our food system, both at a national and European level.