This paper explores the contributions of research to the field of adults learning mathematics (ALM) in the last twenty years. The results of the review of the literature on ALM show that the most cited studies that have been published in the last twenty years tend to focus on the field of numeracy to understand health data (such as understanding how to dose a medicine in a medical treatment). However, we know little about key aspects of how adults learn mathematics, what obstacles they encounter, and how they overcome them. This paper identifies the main gaps that ALM research faces in the coming years.
Numeracy and mathematics education in vocational education is under pressure to keep up with the rapid changes in the workplace due to developments in workplace mathematics and the ubiquitous availability of technological tools. Vocational education is a large stream in education for 12- to 20-years-olds in the Netherlands and the numeracy and mathematics curriculum is on the brink of a reform. To assess what is known from research on numeracy in vocational education, we are in the process of conducting a systematic review of the international scientific literature of the past five years to get an overview of the recent developments and to answer research questions on the developments in vocational educational practices. The work is still in progress. We will present preliminary and global results. We see vocational education from the perspective of (young) adults learning mathematics.
LINK
In this chapter, I look back at the implementation of W12-16, a major reform of mathematics education in the lower grades of general secondary education and pre-vocational secondary education in the Netherlands including all students aged 12–16. The nationwide implementation of W12-16 started in 1990 and envisioned a major change in what and how mathematics was taught and learned. The content was broadened from algebra and geometry to algebra, geometry and measurement, numeracy, and data processing and statistics. The learning trajectories and the instruction theory were based on the ideas of Realistic Mathematics Education (RME): the primary processes used in the classroom were to be guided re-invention and problem solving. ‘Ensuring usability’ in the title of this chapter refers to the aim of the content being useful and understandable for all students, but also to the involvement of all relevant stakeholders in the implementation project, including teachers, students, parents, editors, curriculum and assessment developers, teacher educators, publishers, media and policy makers. Finally, I reflect on the current state of affairs more than 20 years after the nationwide introduction. The main questions to be asked are: Have the goals been reached? Was the implementation successful?
LINK