A considerable amount of literature has been published on Corporate Reputation, Branding and Brand Image. These studies are extensive and focus particularly on questionnaires and statistical analysis. Although extensive research has been carried out, no single study was found which attempted to predict corporate reputation performance based on data collected from media sources. To perform this task, a biLSTM Neural Network extended with attention mechanism was utilized. The advantages of this architecture are that it obtains excellent performance for NLP tasks. The state-of-the-art designed model achieves highly competitive results, F1 scores around 72%, accuracy of 92% and loss around 20%.
DOCUMENT
Corporate reputation is an intangible resource that is closely tied to an organization’s success but measuring it and to derive actions that can improve the reputations can be a long and expensive journey for an organization. In the available literature, corporate reputation is primarily measured through surveys, which can be time and cost intensive. This paper uses online reviews on the web as the source for a machine-learning driven aspect-based sentiment analysis that can enable organizations to evaluate their corporate reputation on a fine-grained level. The analysis is done unsupervised without organizations needing to manually label datasets. Using the insights generated through the analysis, on one hand, organizations can save costs and time to measure corporate reputation, and, on the other hand, it provides an in-depth analysis that splits the overall reputation into multiple aspects, with which organizations can identify weaknesses and in turn improve their corporate reputa tion. Therefore, this research is relevant for organizations aiming to understand and improve their corporate reputation to achieve success, for example, in form of financial performance, or for organizations that help and consult other organizations on their journeys to increased success. Our approach is validated, evaluated and illustrated with Trustpilot review data.
DOCUMENT
The overarching aim of this paper is to define, develop and present a processing pipeline that has practical application for companies, meaning, being extendable, representative from marketing perspective, and reusable with high reliability for any new, unseen data that generates insights for evaluation of the reputation construct based on collected reviews for any (e.g. retail) organisation that is willing to analyse or improve its performance. First, determinant attributes have to be defined in order to generate insights for evaluation with respect to corporate reputation. Second, in order to generate insights data has to be collected and therefore a method has to be developed in order to extract online stakeholder data from reviews. Furthermore, a suitable algorithm has to be created to assess the extracted information based on the determinant attributes in order to analyse the data. Preliminary results indicate that application of our processing pipeline to online employee review data that are publicly available on the web is valid.
DOCUMENT
Retail industry consists of the establishment of selling consumer goods (i.e. technology, pharmaceuticals, food and beverages, apparels and accessories, home improvement etc.) and services (i.e. specialty and movies) to customers through multiple channels of distribution including both the traditional brickand-mortar and online retailing. Managing corporate reputation of retail companies is crucial as it has many advantages, for instance, it has been proven to impact generated revenues (Wang et al., 2016). But, in order to be able to manage corporate reputation, one has to be able to measure it, or, nowadays even better, listen to relevant social signals that are out there on the public web. One of the most extensive and widely used frameworks for measuring corporate reputation is through conducting elaborated surveys with respective stakeholders (Fombrun et al., 2015). This approach is valuable but deemed to be laborious and resource-heavy and will not allow to generate automatic alerts and quick and live insights that are extremely needed in this era of internet. For these purposes a social listening approach is needed that can be tailored to online data such as consumer reviews as the main data source. Online review datasets are a form of electronic Word-of-Mouth (WOM) that, when a data source is picked that is relevant to retail, commonly contain relevant information about customers’ perceptions regarding products (Pookulangara, 2011) and that are massively available. The algorithm that we have built in our application provides retailers with reputation scores for all variables that are deemed to be relevant to retail in the model of Fombrun et al. (2015). Examples of such variables for products and services are high quality, good value, stands behind, and meets customer needs. We propose a new set of subvariables with which these variables can be operationalized for retail in particular. Scores are being calculated using proportions of positive opinion pairs such as <fast, delivery> or <rude, staff> that have been designed per variable. With these important insights extracted, companies can act accordingly and proceed to improve their corporate reputation. It is important to emphasize that, once the design is complete and implemented, all processing can be performed completely automatic and unsupervised. The application makes use of a state of the art aspect-based sentiment analysis (ABSA) framework because of ABSA’s ability to generate sentiment scores for all relevant variables and aspects. Since most online data is in open form and we deliberately want to avoid labelling any data by human experts, the unsupervised aspectator algorithm has been picked. It employs a lexicon to calculate sentiment scores and uses syntactic dependency paths to discover candidate aspects (Bancken et al., 2014). We have applied our approach to a large number of online review datasets that we sampled from a list of 50 top global retailers according to National Retail Federation (2020), including both offline and online operation, and that we scraped from trustpilot, a public website that is well-known to retailers. The algorithm has carefully been evaluated by manually annotating a randomly sampled subset of the datasets for validation purposes by two independent annotators. The Kappa’s score on this subset was 80%.
MULTIFILE
During the past two decades the implementation and adoption of information technology has rapidly increased. As a consequence the way businesses operate has changed dramatically. For example, the amount of data has grown exponentially. Companies are looking for ways to use this data to add value to their business. This has implications for the manner in which (financial) governance needs to be organized. The main purpose of this study is to obtain insight in the changing role of controllers in order to add value to the business by means of data analytics. To answer the research question a literature study was performed to establish a theoretical foundation concerning data analytics and its potential use. Second, nineteen interviews were conducted with controllers, data scientists and academics in the financial domain. Thirdly, a focus group with experts was organized in which additional data were gathered. Based on the literature study and the participants responses it is clear that the challenge of the data explosion consist of converting data into information, knowledge and meaningful insights to support decision-making processes. Performing data analyses enables the controller to support rational decision making to complement the intuitive decision making by (senior) management. In this way, the controller has the opportunity to be in the lead of the information provision within an organization. However, controllers need to have more advanced data science and statistic competences to be able to provide management with effective analysis. Specifically, we found that an important skill regarding statistics is the visualization and communication of statistical analysis. This is needed for controllers in order to grow in their role as business partner..
DOCUMENT
Recent years have seen a massive growth in ethical and legal frameworks to govern data science practices. Yet one of the core questions associated with ethical and legal frameworks is the extent to which they are implemented in practice. A particularly interesting case in this context comes to public officials, for whom higher standards typically exist. We are thus trying to understand how ethical and legal frameworks influence the everyday practices on data and algorithms of public sector data professionals. The following paper looks at two cases: public sector data professionals (1) at municipalities in the Netherlands and (2) at the Netherlands Police. We compare these two cases based on an analytical research framework we develop in this article to help understanding of everyday professional practices. We conclude that there is a wide gap between legal and ethical governance rules and the everyday practices.
MULTIFILE
Full tekst beschikbaar voor gebruikers van Linkedin. Driven by technological innovations such as cloud and mobile computing, big data, artificial intelligence, sensors, intelligent manufacturing, robots and drones, the foundations of organizations and sectors are changing rapidly. Many organizations do not yet have the skills needed to generate insights from data and to use data effectively. The success of analytics in an organization is not only determined by data scientists, but by cross-functional teams consisting of data engineers, data architects, data visualization experts, and ("perhaps most important"), Analytics Translators.
LINK
This study evaluates the effectiveness of the European Union's Corporate Sustainability Reporting Directive (CSRD) in quantitatively measuring the transition of companies to a circular economy. First, using the most recent literature review on circularity metrics, a complete overview of the currently available circularity metrics is developed. Subsequently, it is determined which circularity metrics can be generated with the available quantitative datapoints of CSRD. The metrics that can be generated were analyzed on their ability to cover all circular strategies, to represent different Product-as-a-Service systems and to acknowledge the key role of Critical Raw Materials in a circular economy. The study finds that, with data disclosed under CSRD, metrics can be generated to cover all circular strategies. However, gaps remain in representing pay-per-use and pay-perperformance systems and the use of Critical Raw Materials. Recommendations are to include ‘Product utilization’ and ‘Mass of Critical Raw Materials used’ in the data disclosed under CSRD and to have an independent institution report data to enable benchmarking of performances. Finally, this study concludes with an overview of the metrics which enable to measure circular transitions using data disclosed by CSRD
DOCUMENT
Energy management and carbon accounting schemes are increasingly being adopted as a corporate response to climate change. These schemes often demand the setting of ambitious targets for the reduction of corporate greenhouse gas emissions. There is however only limited empirical insight in the companies’ target setting process and the auditing practice of certifying agencies that evaluate ambition levels of greenhouse gas reduction targets. We studied the target setting process of firms participating in the CO2 Performance Ladder. The CO2 Performance Ladder is a new certifiable scheme for energy management and carbon accounting that is used as a tool for green public procurement in the Netherlands. This study aimed at answering the question ‘to what extent does the current target setting process in the CO2 Performance Ladder lead to ambitious CO2 emission reduction goals?’. The research methods were interviews with relevant stakeholders (auditors, companies and consultants), document reviews of the certification scheme, and an analysis of corporate target levels for the reduction of CO2 emissions. The research findings showed that several certification requirements for target setting for the reduction of CO2 emissions were interpreted differently by the various actors and that the conformity checks by the auditors did not include a full assessment of all certification requirements. The research results also indicated that corporate CO2 emission reduction targets were not very ambitious. The analysis of the target setting process revealed that there was a semi-structured bottom-up auditing practice for evaluating the corporate CO2 emission reduction targets, but the final assessment whether target levels were sufficiently ambitious were rather loose. The main conclusion is that the current target setting process in the CO2 Performance Ladder did not necessarily lead to establishing the most ambitious goals for CO2 emission reduction. This process and the tools to assess the ambition level of the CO2 emission reduction targets need further improvement in order to maintain the CO2 Performance Ladder as a valid tool for green public procurement.
DOCUMENT
This research demonstrates the power and robustness of the vocabulary method by Hernández-Rubio et al. (2019) for aspect extraction from online review data. We showcase that this algorithm not only works on the English language based on the CoreNLP toolkit, but also extend it on the Dutch language, specifically with aid of the Frog toolkit. Results on sampled datasets for three different retailers show that it can be used to extract fine-grained aspects that are relevant to acquire corporate reputation insights.
DOCUMENT