BACKGROUND: Critically ill patients receiving invasive ventilation are at risk of sputum retention. Mechanical insufflation-exsufflation (MI-E) is a technique used to mobilise sputum and optimise airway clearance. Recently, interest has increased in the use of mechanical insufflation-exsufflation for invasively ventilated critically ill adults, but evidence for the feasibility, safety and efficacy of this treatment is sparse. The aim of this scoping review is to map current and emerging evidence on the feasibility, safety and efficacy of MI-E for invasively ventilated adult patients with the aim of highlighting knowledge gaps and identifying areas for future research. Specific research questions aim to identify information informing indications and contraindications to the use of MI-E in the invasively ventilated adult, MI-E settings used, outcome measures reported within studies, adverse effects reported and perceived barriers and facilitators to using MI-E reported.METHODS: We will search electronic databases MEDLINE, EMBASE, CINAHL using the OVID platform, PROSPERO, The Cochrane Library, ISI Web of Science and the International Clinical Trials Registry Platform. Two authors will independently screen citations, extract data and evaluate risk of bias using the Mixed Methods Appraisal Tool. Studies included will present original data and describe MI-E in invasively ventilated adult patients from 1990 onwards. Our exclusion criteria are studies in a paediatric population, editorial pieces or letters and animal or bench studies. Search results will be presented in a PRISMA study flow diagram. Descriptive statistics will be used to summarise quantitative data. For qualitative data relating to barriers and facilitators, we will use content analysis and the Theoretical Domains Framework (TDF) as a conceptual framework. Additional tables and relevant figures will present data addressing our research questions.DISCUSSION: Our findings will enable us to map current and emerging evidence on the feasibility, safety and efficacy of MI-E for invasively ventilated critically ill adult patients. These data will provide description of how the technique is currently used, support healthcare professionals in their clinical decision making and highlight areas for future research in this important clinical area.
DOCUMENT
Mechanical insufflation-exsufflation (MI-E) is traditionally used in the neuromuscular population. There is growing interest of MI-E use in invasively ventilated critically ill adults. We aimed to map current evidence on MI-E use in invasively ventilated critically ill adults. Two authors independently searched electronic databases MEDLINE, Embase, and CINAHL via the Ovid platform; PROSPERO; Cochrane Library; ISI Web of Science; and International Clinical Trials Registry Platform between January 1990–April 2021. Inclusion criteria were (1) adult critically ill invasively ventilated subjects, (2) use of MI-E, (3) study design with original data, and (4) published from 1990 onward. Data were extracted by 2 authors independently using a bespoke extraction form. We used Mixed Methods Appraisal Tool to appraise risk of bias. Theoretical Domains Framework was used to interpret qualitative data. Of 3,090 citations identified, 28 citations were taken forward for data extraction. Main indications for MI-E use during invasive ventilation were presence of secretions and mucus plugging (13/28, 46%). Perceived contraindications related to use of high levels of positive pressure (18/28, 68%). Protocolized MI-E settings with a pressure of ±40 cm H2O were most commonly used, with detail on timing, flow, and frequency of prescription infrequently reported. Various outcomes were re-intubation rate, wet sputum weight, and pulmonary mechanics. Only 3 studies reported the occurrence of adverse events. From qualitative data, the main barrier to MI-E use in this subject group was lack of knowledge and skills. We concluded that there is little consistency in how MI-E is used and reported, and therefore, recommendations about best practices are not possible.
DOCUMENT
Background: To avoid overexertion in critically ill patients, information on the physical demand, i.e., metabolic load, of daily care and active exercises is warranted. Objective: The objective of this study was toassess the metabolic load during morning care activities and active bed exercises in mechanically ventilated critically ill patients. Methods: This study incorporated an explorative observational study executed in a university hospital intensive care unit. Oxygen consumption (VO2) was measured in mechanically ventilated (≥48 h) critically ill patients during rest, routine morning care, and active bed exercises. We aimed to describe and compare VO2 in terms of absolute VO2 (mL) defined as the VO2 attributable to the activity and relative VO2 in mL per kilogram bodyweight, per minute (mL/kg/min). Additional outcomes achieved during the activity were perceived exertion, respiratory variables, and the highest VO2 values. Changes in VO2 and activity duration were tested using paired tests. Results: Twenty-one patients were included with a mean (standard deviation) age of 59 y (12). Median (interquartile range [IQR]) durations of morning care and active bed exercises were 26 min (21–29) and 7 min (5–12), respectively. Absolute VO2 of morning care was significantly higher than that of active bed exercises (p = 0,009). Median (IQR) relative VO2 was 2.9 (2.6–3.8) mL/kg/min during rest; 3.1 (2.8–3.7) mL/kg/min during morning care; and 3.2 (2.7–4) mL/kg/min during active bed exercises. The highest VO2 value was 4.9 (4.2–5.7) mL/kg/min during morning care and 3.7 (3.2–5.3) mL/kg/min during active bed exercises. Median (IQR) perceived exertion on the 6–20 Borg scale was 12 (10.3–14.5) during morning care (n = 8) and 13.5 (11–15) during active bed exercises (n = 6). Conclusion: Absolute VO2 in mechanically ventilated patients may be higher during morning care than during active bed exercises due to the longer duration of the activity. Intensive care unit clinicians should be aware that daily-care activities may cause intervals of high metabolic load and high ratings of perceived exertion.
DOCUMENT