In this charging plaze energy exchange will be done by a DC microgrid between PV, V2G electric cars and lighting. Control is done autonomous with Droop Rate Control.
DOCUMENT
Het DC Laadplein wordt gezien als een mogelijke vervanger van AC laadpleinen, waarbij de potentie van de netaansluiting optimaal benut kan worden en meerdere voertuigen effectief kunnen worden opgeladen. In het project hebben Time Shift en de HvA het DC laadplein ontwikkeld, en heeft Time Shift parallel een eigen DC-laadpaal ontwikkeld.
DOCUMENT
Versnelling elektrificatie in de gebouwde omgevingSlim gebruik van bestaande OV-DCelektriciteitsnettenDroop rate controlled DC microgridsTramhalte wordt energiehalteLab simulaties HvA Energielab
DOCUMENT
The application of DC grids is gaining more attention in office applications. Especially since powering an office desk would not require a high power connection to the main AC grid but could be made sustainable using solar power and battery storage. This would result in fewer converters and further advanced grid utilization. In this paper, a sustainable desk power application is described that can be used for powering typical office appliances such as computers, lighting, and telephones. The desk will be powered by a solar panel and has a battery for energy storage. The applied DC grid includes droop control for power management and can either operate stand-alone or connected to other DC-desks to create a meshed-grid system. A dynamic DC nano-grid is made using multiple self-developed half-bridge circuit boards controlled by microcontrollers. This grid is monitored and controlled using a lightweight network protocol, allowing for online integration. Droop control is used to create dynamic power management, allowing automated control for power consumption and production. Digital control is used to regulate the power flow, and drive other applications, including batteries and solar panels. The practical demonstrative setup is a small-sized desktop with applications built into it, such as a lamp, wireless charging pad, and laptop charge point for devices up to 45W. User control is added in the form of an interactive remote wireless touch panel and power consumption is monitored and stored in the cloud. The paper includes a description of technical implementation as well as power consumption measurements.
DOCUMENT
This paper proposes a Hybrid Microgrid (HμG) model including distributed generation (DG) and a hydrogen-based storage system, controlled through a tailored control strategy. The HμG is composed of three DG units, two of them supplied by solar and wind sources, and the latter one based on the exploitation of theProton Exchange Membrane (PEM) technology. Furthermore, the system includes an alkaline electrolyser, which is used as a responsive load to balance the excess of Variable Renewable Energy Sources (VRES) production, and to produce the hydrogen that will be stored into the hydrogen tank and that will be used to supply the fuel cell in case of lack of generation. The main objectives of this work are to present a validated dynamic model for every component of the HμG and to provide a strategy to reduce as much as possible the power absorption from the grid by exploiting the VRES production. The alkaline electrolyser and PEM fuel cell models are validated through real measurements. The State of Charge (SoC) of the hydrogen tank is adjusted through an adaptive scheme. Furthermore, the designed supervisor power control allows reducing the power exchange and improving the system stability. Finally, a case, considering a summer load profile measured in an electrical substation of Politecnico di Torino, is presented. The results demonstrates the advantages of a hydrogen-based micro-grid, where the hydrogen is used as medium to store the energy produced by photovoltaic and wind systems, with the aim to improve the self-sufficiency of the system
MULTIFILE
As the impact of our actions on the climate become more and more clear and environmental awareness is rising, the quest for increasing efficiency and lower environmental impact becomes very important. Efficiency is particularly important in the field of electricity consumption, which keeps on rising as electrification of our transportation, houses, offices and more continues worldwide. These loads and sustainable sources have one thing in common: Direct Current. To successfully respond to this growing usage of direct current (DC) systems it is important to provoke an evolution in the provision of DC infrastructure. The goal of this paper is to create a methodology to calculate and evaluate the power losses in both traditional AC grids and DC microgrids. This is done through simulation models made by Caspoc, a software for modeling and simulating physical systems in analog/power electronics, electric power generation/conversion/distribution and mechatronics. The results are compared on the quantifiable indicator: energy savings. The impact of cable losses and different converters is calculated through the simulation. This methodology and simulation strategy can be the basis for the optimal grid design in other infrastructures and cases. The model will be validated with intensive tests of household equipment in a later stage of the project, this paper focuses on the model and methodology itself. DOI: 10.1109/DUE.2014.6827760
DOCUMENT
Het veilig en autonoom regelend PV-laadplein met DC-distributie (VAP-DC) is een project waarin het ontwerpen, bouwen, testen en operationeel maken van een DC-netwerk (gelijkspanning) wordt aangetoond.Het systeem op het parkeerdek kan zonder AC (wisselspanning) opereren zoals het verzorgen van verlichting, het elektrische laden en ontladen van EV’s (Electrical Vehicles), waaronder het overbrengen van elektrische lading van de ene naar de andere(n). Het PV-(Photo Voltaic)systeem zorgt voor de energie, en kan het DC-microgrid ook zelf activeren, waardoor een autonoom systeem ontstaat.Het systeem werkt geheel autonoom (A) met een eigen zeer snel reagerend congestiemanagementmethode, modulaire Droop Rate Control strategie. In dit ontwerp is als extra veiligheid een safetywire voorzien, waar de AFE (Active Front End), laadvoorzieningen en PV-systeem op zijn aangesloten.Eventueel kan de AFE worden ingeschakeld, zodat er een bi-directionele vermogenstransfer kan plaatsvinden tussen de twee geïsoleerde AC- en DC-netten.Het TN-S stelsel met een PE-draad voor veiligheid en afvoer van hoogfrequente stromen, en een aparte aarde, is de beste methode om een veilig, autonoom, droop rate controlled grid te maken. Metingen met ingebouwde referentie-elektrode voor onderzoek naar mogelijke zwerfstromen, laat geen verband zien met het wel of niet actief zijn van de PV-panelen en/of de laadpalen. Een verklaring hiervoor kan zijn dat de lekstromen die ontstaan via de stalen constructie goed worden afgevoerd.Aangetoond is dat het DC-grid zowel zelfstandig als naast het AC-grid kan bestaan om energie te leveren voor DC-producten zoals bidirectionele EV-laadplaatsen en verlichting zodat er een nieuw instrument beschikbaar is om de energietransitie te realiseren. Dit onderzoek toont aan dat het mogelijk is om in Nederland gelijkstroominstallaties breed uit te rollen.Met leden van de normcommissie NEN TC 64 binnen het onderzoekteam en de commissie zelf is het ontwerp en de realisatie van de onderzoekinstallatie uitvoerig besproken. Deze pilot vormt daarmee een belangrijke basis voor verdere normering van DC-installaties in de NEN 1010 en NPR 9090. Verder onderzoek is nodig om deze norm en regelgeving breed in te passen.Dit onderzoek biedt onderbouwing bij de verdere ontwikkeling van actieve gelijkstroominstallaties.Er is grote interesse van diverse bedrijven en (overheids-)instanties naar de ervaringen en oplossingen die het onderzoek bracht. Hierdoor ervaarde het projectteam de nut en noodzaak dat er onderzoek gedaan wordt naar systemen die de huidige overbelastingsproblemen kunnen minimaliseren of om in ieder geval alternatieven aan te kunnen bieden.
DOCUMENT
The SynergyS project aims to develop and assess a smart control system for multi-commodity energy systems (SMCES). The consortium, including a broad range of partners from different sectors, believes a SMCES is better able to incorporate new energy sources in the energy system. The partners are Hanze, TU Delft, University of Groningen, TNO, D4, Groningen Seaports, Emerson, Gain Automation Technology, Energy21, and Enshore. The project is supported by a Energy Innovation NL (topsector energie) subsidy by the Ministry of Economic Affairs.Groningen Seaports (Eemshaven, Chemical Park Delfzijl) and Leeuwarden are used as case studies for respectively an industrial and residential cluster. Using a market-based approach new local energy markets have been developed complementing the existing national wholesale markets. Agents exchange energy using optimized bidding strategies, resulting in better utilization of the assets in their portfolio. Using a combination of digital twins and physical assets from two field labs (ENTRANCE, The Green Village) performance of the SMCES is assessed. In this talk the smart multi-commodity energy system is presented, as well as some first results of the assessment. Finally an outlook is given how the market-based approach can benefit the development of energy hubs.
LINK
Het creëren van een veilig leerklimaat op schoolvraagt om een gerichte organisatiebrede aanpakvan alle professionals die daar werkzaam zijn.Ook binnen een sportvereniging moet er sprakezijn van een organisatiebrede aanpak om tot eenverenigingsbreed gedragen veilig sportklimaatte komen. Kan de uit het onderwijs afkomstigemethodiek van Positive Behaviour Support (PBS)een helpende hand bieden bij de sportvereniging?
DOCUMENT