De meest gebruikte opbouw in business intelligence, predictive analitics en analytics modellen is de moeilijkheidsgraad: 1) descriptive, 2) diagnostic, 3) predictive en 4) prescriptive. Deze schaal vertelt iets over de volwassenheid van het gebruik van data door de organisatie. Een model dat niet op zichzelf staat en een achterliggende methode kent is de data driehoek van EDM (Figuur 1), welke in dit artikel zal worden toegelicht.
LINK
Automated Analysis of Human Performance Data could help to understand and possibly predict the performance of the human. To inform future research and enable Automated Analysis of Human Performance Data a systematic mapping study (scoping study) on the state-of-the-art knowledge is performed on three interconnected components(i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis. Using a systematic method of Kitchenham and Charters for performing the systematic mapping study, resulted in a comprehensive search for studies and a categorisation the studies using a qualitative method. This systematic mapping review extends the philosophy of Shyr and Spisic, and Knuth and represents the state-of-art knowledge on Human Performance,Monitoring Human Performance and Automated Data Analysis
DOCUMENT
In the course of our supervisory work over the years, we have noticed that qualitative research tends to evoke a lot of questions and worries, so-called frequently asked questions (FAQs). This series of four articles intends to provide novice researchers with practical guidance for conducting high-quality qualitative research in primary care. By ‘novice’ we mean Master’s students and junior researchers, as well as experienced quantitative researchers who are engaging in qualitative research for the first time. This series addresses their questions and provides researchers, readers, reviewers and editors with references to criteria and tools for judging the quality of qualitative research papers. The second article focused on context, research questions and designs, and referred to publications for further reading. This third article addresses FAQs about sampling, data collection and analysis. The data collection plan needs to be broadly defined and open at first, and become flexible during data collection. Sampling strategies should be chosen in such a way that they yield rich information and are consistent with the methodological approach used. Data saturation determines sample size and will be different for each study. The most commonly used data collection methods are participant observation, face-to-face in-depth interviews and focus group discussions. Analyses in ethnographic, phenomenological, grounded theory, and content analysis studies yield different narrative findings: a detailed description of a culture, the essence of the lived experience, a theory, and a descriptive summary, respectively. The fourth and final article will focus on trustworthiness and publishing qualitative research.
DOCUMENT
Abstract: Background: Chronic obstructive pulmonary disease (COPD) and asthma have a high prevalence and disease burden. Blended self-management interventions, which combine eHealth with face-to-face interventions, can help reduce the disease burden. Objective: This systematic review and meta-analysis aims to examine the effectiveness of blended self-management interventions on health-related effectiveness and process outcomes for people with COPD or asthma. Methods: PubMed, Web of Science, COCHRANE Library, Emcare, and Embase were searched in December 2018 and updated in November 2020. Study quality was assessed using the Cochrane risk of bias (ROB) 2 tool and the Grading of Recommendations, Assessment, Development, and Evaluation. Results: A total of 15 COPD and 7 asthma randomized controlled trials were included in this study. The meta-analysis of COPD studies found that the blended intervention showed a small improvement in exercise capacity (standardized mean difference [SMD] 0.48; 95% CI 0.10-0.85) and a significant improvement in the quality of life (QoL; SMD 0.81; 95% CI 0.11-1.51). Blended intervention also reduced the admission rate (relative ratio [RR] 0.61; 95% CI 0.38-0.97). In the COPD systematic review, regarding the exacerbation frequency, both studies found that the intervention reduced exacerbation frequency (RR 0.38; 95% CI 0.26-0.56). A large effect was found on BMI (d=0.81; 95% CI 0.25-1.34); however, the effect was inconclusive because only 1 study was included. Regarding medication adherence, 2 of 3 studies found a moderate effect (d=0.73; 95% CI 0.50-0.96), and 1 study reported a mixed effect. Regarding self-management ability, 1 study reported a large effect (d=1.15; 95% CI 0.66-1.62), and no effect was reported in that study. No effect was found on other process outcomes. The meta-analysis of asthma studies found that blended intervention had a small improvement in lung function (SMD 0.40; 95% CI 0.18-0.62) and QoL (SMD 0.36; 95% CI 0.21-0.50) and a moderate improvement in asthma control (SMD 0.67; 95% CI 0.40-0.93). A large effect was found on BMI (d=1.42; 95% CI 0.28-2.42) and exercise capacity (d=1.50; 95% CI 0.35-2.50); however, 1 study was included per outcome. There was no effect on other outcomes. Furthermore, the majority of the 22 studies showed some concerns about the ROB, and the quality of evidence varied. Conclusions: In patients with COPD, the blended self-management interventions had mixed effects on health-related outcomes, with the strongest evidence found for exercise capacity, QoL, and admission rate. Furthermore, the review suggested that the interventions resulted in small effects on lung function and QoL and a moderate effect on asthma control in patients with asthma. There is some evidence for the effectiveness of blended self-management interventions for patients with COPD and asthma; however, more research is needed. Trial Registration: PROSPERO International Prospective Register of Systematic Reviews CRD42019119894; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=119894
DOCUMENT
Data is widely recognized as a potent catalyst for advancing healthcare effectiveness, increasing worker satisfaction, and mitigating healthcare costs. The ongoing digital transformation within the healthcare sector promises to usher in a new era of flexible patient care, seamless inter-provider communication, and data-informed healthcare practices through the application of data science. However, more often than not data lacks interoperability across different healthcare institutions and are not readily available for analysis. This inability to share data leads to a higher administrative burden for healthcare providers and introduces risks when data is missing or when delays occur. Moreover, medical researchers face similar challenges in accessing medical data due to thedifficulty of extracting data from applications, a lack of standardization, and the required data transformations before it can be used for analysis. To address these complexities, a paradigm shift towards a data-centric application landscape is essential, where data serves as the bedrock of the healthcare infrastructure and is application agnostic. In short, a modern way to think about data in general is to go from an application driven landscape to a data driven landscape, which will allow for better interoperability and innovative healthcare solutions.In the current project the research group Digital Transformation at Hanze University of Applied Sciences works together with industry partners to build an openEHR implementation for a Groningen-based mental healthcare provider.
DOCUMENT
PURPOSE: Fatigue is a common and potentially disabling symptom in patients with cancer. It can often be effectively reduced by exercise. Yet, effects of exercise interventions might differ across subgroups. We conducted a meta-analysis using individual patient data of randomized controlled trials (RCTs) to investigate moderators of exercise intervention effects on cancer-related fatigue.METHODS: We used individual patient data from 31 exercise RCTs worldwide, representing 4,366 patients, of whom 3,846 had complete fatigue data. We performed a one-step individual patient data meta-analysis, using linear mixed-effect models to analyze the effects of exercise interventions on fatigue (z-score) and to identify demographic, clinical, intervention- and exercise-related moderators. Models were adjusted for baseline fatigue and included a random intercept on study level to account for clustering of patients within studies. We identified potential moderators by testing their interaction with group allocation, using a likelihood ratio test.RESULTS: Exercise interventions had statistically significant beneficial effects on fatigue (β= -0.17 [95% confidence interval (CI) -0.22;-0.12]). There was no evidence of moderation by demographic or clinical characteristics. Supervised exercise interventions had significantly larger effects on fatigue than unsupervised exercise interventions (βdifference= -0.18 [95%CI -0.28;-0.08]). Supervised interventions with a duration ≤12 weeks showed larger effects on fatigue (β= -0.29 [95% CI -0.39;-0.20]) than supervised interventions with a longer duration. CONCLUSIONS: In this individual patient data meta-analysis, we found statistically significant beneficial effects of exercise interventions on fatigue, irrespective of demographic and clinical characteristics. These findings support a role for exercise, preferably supervised exercise interventions, in clinical practice. Reasons for differential effects in duration require further exploration.
DOCUMENT
Illicit data markets have emerged on Telegram, a popular online instant messaging application, bringing together thousands of users worldwide in an unregulated exchange of sensitive data. These markets operate through vendors who offer enormous quantities of such data, from personally identifiable information to financial data, while potential customers bid for these valuable assets. This study describes how Telegram data markets operate and discusses what interventions could be used to disrupt them. Using crime script analysis, we observed 16 Telegram meeting places encompassing public and private channels and groups. We obtained information about how the different meeting places function, what are their inside rules, and what tactics are employed by users to advertise and trade data. Based on the crime script, we suggest four feasible situational crime prevention measures to help disrupt these markets. These include taking down the marketplaces, reporting them, spamming and flooding techniques, and using warning banners. This is a post-peer-review, pre-copyedit version of an article published in Trends in organized crime . The final authenticated version is available online at https://doi.org/10.1007/s12117-024-09532-6
DOCUMENT
Learning analytics is the analysis of student data with the purpose of improving learning. However, the process of data cleaning remains underexposed within learning analytics literature. In this paper, we elaborate on choices made in the cleaning process of student data and their consequences. We illustrate this with a case where data was gathered during six courses taught via Moodle. In this data set, only 21% of the logged activities were linked to a specific course. We illustrate possible choices in dealing with missing data by applying the cleaning process twelve times with different choices on copies of the raw data. Consequently, the analysis of the data shows varying outcomes. As the purpose of learning analytics is to intervene based on analysis and visualizations, it is of utmost importance to be aware of choices made during data cleaning. This paper's main goal is to make stakeholders of (learning) analytics activities aware of the fact that choices are made during data cleaning have consequences on the outcomes. We believe that there should be transparency to the users of these outcomes and give them a detailed report of the decisions made.
DOCUMENT
Data is widely recognized as a potent catalyst for advancing healthcare effectiveness, increasing worker satisfaction, and mitigating healthcarecosts. The ongoing digital transformation within the healthcare sector promises to usher in a new era of flexible patient care, seamless inter-provider communication, and data-informed healthcare practices through the application of data science. However, more often than not data lacks interoperability across different healthcare institutions andare not readily available for analysis. This inability to share data leads to a higher administrative burden for healthcare providers and introduces risks when data is missing or when delays occur. Moreover, medical researchers face similar challenges in accessing medical data due to thedifficulty of extracting data from applications, a lack of standardization, and the required data transformations before it can be used for analysis. To address these complexities, a paradigm shift towards a data-centricapplication landscape is essential, where data serves as the bedrock of the healthcare infrastructure and is application agnostic.In short, a modern way to think about data in general is to go from an application driven landscape to a data driven landscape, which willallow for better interoperability and innovative healthcare solutions.
LINK
Het project van Aeres Hogeschool Dronten heeft als doel om via het delen en analyseren van telersdata binnen een groep van dertien telers te komen tot nieuwe inzichten, betere bedrijfsvoering en efficiëntere ketens, gericht op economische en ecologische duurzaamheid. Hiervoor wordt een data-infrastructuur gerealiseerd waarmee telers gefaciliteerd worden in het verzamelen, delen en analyseren van data en toegang krijgen tot complexere analyse technieken. Het project beoogt een groep telers op te leiden om de infrastructuur en tools te gebruiken en gezamenlijk data te delen en te analyseren om de teelt te verbeteren. Aan het einde van het project worden concrete verbeteringen verwacht op het gebied van input en opbrengst in de aardappelteelt.Het project richtte zich op het onderzoeken van hoe data van agrarische ondernemers in Flevoland gebruikt en gedeeld kan worden om economische en ecologische verbeteringen te bereiken. De landbouwsector verzamelt steeds meer gegevens over variabelen die de groei en bewaring van gewassen beïnvloeden, waarmee de benadering van landbouw verduurzaamd kan worden. Echter, het gebruik van data staat nog in de kinderschoenen en beslissingen worden vaak genomen op basis van advisering van externe commerciële partijen. Het delen van data is ook nog gevoelige materie. Het project wil deze drempels verlagen door telers meer data onderling te laten uitwisselen en met partners in de keten.De data-infrastructuur wordt gerealiseerd voor een groep van 15-20 telers die bereid zijn teelt- en/of bewaarsturing te doen op basis van beschikbare object-specifieke en actuele data. De data kunnen met elkaar gedeeld worden en zo kunnen de bedrijven verbeterd worden. De telers krijgen via de infrastructuur toegang tot complexere analyse technieken. Het project is opgedeeld in drie groepen op basis van locatie in de provincie: een groep telers rond een pilot bedrijf in Dronten, een groep rond een pilot bedrijf in Swifterbant en een groep in de NOP.De drie pilot bedrijven hebben aan het begin van het project een inventarisatie gedaan op basis van een door Aeres opgestelde vragenlijst om inzicht te krijgen in de minimale beschikbare data voor deelname aan het project. De meeste gevraagde data zijn reeds beschikbaar, behalve bij het pilot bedrijf in de NOP. De ontbrekende data kunnen worden opgevraagd bij lokale weerstations of in het project door projectpartners worden gerealiseerd.In de agrarische sector komt het vaak voor dat er ontbrekende data zijn over de factoren die bijdragen aan mislukkingen in de precisielandbouw. Dit komt doordat er vaak wordt gedacht in termen van wat wel werkt, in plaats van wat niet werkt. Een manier om dit tegen te gaan is door bewust te zijn van de ontbrekende data en deze proactief op te zoeken. Dit kan bijvoorbeeld door onderzoek te doen naar de milieu-impact van landbouw.Door dit project is beter inzicht verkregen in de effectiviteit van inputs alsmede met betrekking tot de impact op de omgeving. De volgende verbeteringen zijn gerealiseerd:• Beter inzicht in timing van teelthandelingen waardoor de bodem wordt ontzien.• Beter inzicht in effecten van teeltrotaties waardoor gekozen kan worden voor rotaties met minder impact en toch goede financiële resultaten behaald worden.• Door vergelijking kan er effectiever omgegaan worden met inputs zoals mest en gewasbeschermingsmiddelen waardoor naast minder gebruik ook minder af- en uitspoeling zal plaatsvinden.• Door effectiever gebruik van inputs zal per kg geproduceerde aardappelen minder oppervlakte, energie en chemie nodig zijn.Trefwoorden: digitalisering boerenbedrijf, data, pop3, databoeren, precisielandbouw RVO zaaknummer: 17717000042
DOCUMENT